

Ringversuche der staatlichen Immissionsmessstellen (STIMES)

Organische Stoffe vom 11. bis 13. November 2008

LANUV-Fachbericht 30

Ringversuche der staatlichen Immissionsmessstellen (STIMES)	
STIMES-Ringversuch – Organische Stoffe vom 11. bis 13. November 2008	
LANUV-Fachbericht 30	
Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen	
Docklinghaucan 2011	
Recklinghausen 2011	
Reckingnausen 2011	
Reckingnausen 2011	
Reckingnausen 2011	
Reckingnausen 2011	
Reckingnausen 2011	
Reckingnausen 2011	

IMPRESSUM

Herausgeber Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen (LANUV NRW) Leibnizstraße 10, 45659 Recklinghausen

Telefon 02361 305-0 Telefax 02361 305-3215

E-Mail: poststelle@lanuv.nrw.de

Bearbeitung Thorsten Zang

Ludger Breuer Alfred Wagner Dr. Ulrich Pfeffer

ISSN 1864-3930 LANUV-Fachberichte

Informationsdienste: Informationen und Daten aus NRW zu Natur, Umwelt und

Verbraucherschutz unter • www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im
• WDR-Videotext Tafeln 177 bis 179

Bereitschaftsdienst: Nachrichtenbereitschaftszentrale des LANUV NRW

(24-Std.-Dienst): Telefon 0201 714488

Nachdruck – auch auszugsweise – ist nur unter Quellenangaben und Überlassung von

Belegexemplaren nach vorheriger Zustimmung des Herausgebers gestattet.

Die Verwendung für Werbezwecke ist grundsätzlich untersagt.

Inhaltsverzeichnis

1.	Einl	eitung	5
	1.1.	Ziele des Ringversuches	5
	1.2.	Zeitplan	5
	1.3.	Teilnehmerliste	7
2.	Zus	ammenfassung	
	2.1.	Prüfgasübersicht	
	2.2.	Vergleich von Sollwerten und Medianen	13
3.	Aus	wertung	
	3.1.	Z-Score-Auswertung	15
	3.2.	Ermittlung der Sollkonzentration und der Messunsicherheit	
	3.3.	Ergebnisse der einzelnen Prüfgasangebote	19
	3.3.1	1. Angebot 1	19
	3.3.2	2. Angebot 2	21
	3.3.3	3. Angebot 3	23
	3.3.4	4. Angebot 4	25
	3.3.5	5. Angebot 5	27
	3.3.6	6. Angebot 6	29
	3.3.7	7. Angebot 7	31
	3.3.8	3. Angebot 8	33
	3.3.9	9. Angebot 9	35
	3.3.	10. Angebot 10	37
	3.3.	11. Angebot 11	39
	3.4.	Wiederholpräzision nach DIN EN 14662-3	41
	3.5.	Kurzzeitdrift	43
	3.6.	Querempfindlichkeit	44
	3.6.	1. Ozon	46
	3.6.2	2. Organische Störkomponenten	47
	3.6.3	3. Wasserdampf	49
	3.7.	Verschleppung – Memoryeffekt	51
4.	Anh	ang	53
	4.1.	Wiederholpräzision weiterer Prüfgaskomponenten	53
	4.1.1	1. Toluol	53
	4.1.2	2. Ethylbenzol	55
	4.1.3	3. m-/p-Xylol	57
	4.1.4		
	4.2.	Querempfindlichkeit zusätzlicher Komponenten	61
	4.2.1	1. Toluol	61
	4.2.2	2. m-Xylol	65
	4.2.3	3. Ethylbenzol	69
	424	4 o-Xvlol	73

4.3. M	emoryeffekt - Zusätzliche Komponenten	77
4.3.1.	Toluol	77
4.3.2.	m-Xylol	78
4.3.3.	Ethylbenzol	79
434	o-Xvlol	80

1. Einleitung

In der Zeit vom 11. bis 13. November 2008 fand im Landesamt für Natur, Umwelt und Verbraucherschutz NRW ein Ringversuch der staatlichen Immissionsmessstellen der Bundesländer (STIMES) statt. Messobjekte waren Benzol und weitere organische Kohlenwasserstoffe. Insgesamt waren 22 verschiedene Verfahren beteiligt.

Tabelle 1: Zusammenfassung der Teilnehmerverfahren

Anzahl der	Verfahren	Anzahl
Teilnehmer		
16	Kontinuierlich/BTEX-Monitor	19
10	Diskontinuierlich/Absorptionsröhrchen	3

1.1. Ziele des Ringversuches

- Vergleich der Messergebnisse für verschiedene Prüfgaskonzentrationen im Bereich der Grenzwerte und typischer Außenluftbedingungen
- Prüfung der Messgeräte auf Einhaltung der Anforderungen der neuen CEN-Normen hinsichtlich Querempfindlichkeiten
- Vorgabe von Referenzwerten mit definierter Unsicherheit

1.2. Zeitplan

Dienstag, den 11.11.2008			
08:00 - 15:00 Uhr	Aufbau der Messgeräte,		
	Kalibrierungen durch die Teilnehmer		
12:00 - 14:30 Uhr	Nullgas		
15:00 - 15:30 Uhr	Besprechung (Konferenzraum 3, Haus 1)		
15:00 - 00:00 Uhr	Wiederholpräzision n. EN14662-3 Abschn. 8.55		
	Prüfgas 1, Benzol ca. 5 μg/m³		
	10 Einzelwerte abgeben		

Mittwoch, den 12.11.2	Mittwoch, den 12.11.2008			
00:30 - 06:30 Uhr	Wiederholpräzision n. EN14662-3 Abschn. 8.55			
	Prüfgas 2 , Benzol ca. 0,5 μg/m³			
	10 Einzelwerte abgeben			
06:45 - 08:00 Uhr	Nullgas			
08:30 - 10:30 Uhr	Prüfgas 3 , Benzol ca. 30 μg/m³			
11:00 - 13:00 Uhr	Prüfgas 4 , Benzol ca. 10 μg/m³			
13:00 - 14:00 Uhr	Mittagspause			
13:30 - 15:30 Uhr	Prüfgas 5 , Benzol ca. 3 μg/m³			
16:00 - 18:30 Uhr	Kurzzeitdrift (24 h) n. EN 14662-3 Abschn. 8.5.4 Wiederholung von			
	PG 1. Es darf dazu keine Rekalibrierung der Automaten erfolgt			
	sein!			
	4 aufeinander folgende Werte abgeben			
	Prüfgas 6 , Benzol ca. 5 μg/m³			
19:00 - 22:00 Uhr	Nullgas			
22:30 - 01:00 Uhr	Querempfindlichkeit n. EN 14662-3 Abschn. 8.5.9.2			
	Prüfgas 7 , Benzol ca. 5 μg/m³ + Ozon ca. 180 μg/m³			

Donnerstag, den 13.11.2008			
01:30 - 04:00 Uhr	Prüfgas 8 , Benzol ca. 20 μg/m³		
04:00 - 08:00 Uhr	Memoryeffekt nach EN14662-3 Abschn. 8.5.10		
	Die ersten 4 Nullgaswerte abgeben		
	Prüfgas 9 , Nullgas		
08:30 - 10:30 Uhr	Querempfindlichkeit n. EN 14662-3 Abschn. 8.5.9.4		
	Prüfgas 10 , Benzol ca. 5 μg/m³ + org. Verbindungen ca. 10 μg/m³ *¹		
11:00 - 13:00 Uhr	Querempfindlichkeit n. EN 14662-3 Abschn. 8.5.9.3		
	Prüfgas 11, Benzol ca. 5 μg/m³ + 80 % Feuchte		
11:30 - 12:30 Uhr	Abschlussbesprechung (Konferenzraum 3, Haus 1)		
13:00 - 17:00 Uhr	Mittagspause/Abbau		

1.3. Teilnehmerliste

Tabelle 2: Verzeichnis der Teilnehmer

Mess-	Messstelle	Straße	PLZ	Ort
platz				
Nr.				
	Umweltbundesamt			
2	Außenstelle Langen	Paul-Ehrlich-Straße 29	63225	Langen
	Landesamt für Umwelt, Naturschutz	1 aur-Emilion-Straise 29	00220	Langen
	und Geologie,			
4	Mecklenburg-Vorpommern	Goldberger Straße 12	18273	Güstrow
	Thüringer Landesanstalt für Umwelt	Coluberger Ctraise 12	10270	Custiow
5	und Geologie	Göschwitzer Straße 41	07745	Jena
	Landesagentur für Umwelt	GOSCHWIZER GRAISC 41	I-	ociia
7	Labor für Physikalische Chemie	Amba Alagi Straße 5	39100	Bozen
•	Landesamt für Umweltschutz	7 mod 7 mag. Otrailor o	00.00	5020.1
	Sachsen-Anhalt			
9	Außenstelle Magdeburg	Wallonerberg 6-7	39104	Magdeburg
	Hessisches Landesamt für Umwelt			g
10	und Geologie (HLUG)	Rheingaustr. 186	65203	Wiesbaden
	Staatliches Umweltamt Luxemburg			
11	(ADENV)	16, Rue Eugene Ruppert	L-2453	Luxembourg
	Landesamt für Umwelt,			
	Wasserwirtschaft und			
	Gewerbeaufsicht	Rheinallee 97-101		
12	Rheinland-Pfalz (LUWG)		55118	Mainz
45	Devenie charal and a contification of	Düner americken I Unich akt. 400	00470	A
15	Bayerisches Landesamt für Umwelt	Bürgermeister-Ulrichstr. 160	86179	Augsburg
16	Betriebsgesellschaft für Umwelt und	Altrucks adorf 10	01115	Dadahaul
16	Landwirtschaft (BfUL)	Altwahnsdorf 12	01445	Radebeul
17	Institut für Hygiene und Umwelt	Marckmannstraße 129b	20539	Hamburg
	Staatliche Gewerbeaufsicht			
	Hildesheim			
18	ZUS LG	Goslarsche Straße 3	31134	Hildesheim
40	Ota attials and I have a literature to the state of	O aliced auton Otros O s	05504	lt-abar
19	Staatliches Umweltamt Itzehoe	Oelixdorfer Straße 2	25524	Itzehoe
	Senatsverwaltung für Gesundheit,			
	Umwelt			
20	und Verbraucherschutz	Brückenstraße 6	10173	Porlin
20	- III A 41-	Druckenstraise 0	10173	Dellill
26	LANUV NRW Fachbereich 43	Wallneyer Straße 6	15122	Essen
20	1 40 100 5 5 6 1	I vvaiii ieyei Straise 0	40100	LOOCII

Tabelle 3: Messverfahren der Teilnehmer

Messstelle	Messverfahren	Messgerät	Bemerkungen
TLUG-Jena	automatischer GC/FID	CP 7001	
LAU Sachsen-	automatischer	CP 7001	
Anhalt	GC/FID		
BLFU	automatischer GC/FID	CP 7001	
BFUL	automatischer GC/FID	CP 7001	
Institut für Hygiene und Umwelt	automatischer GC/FID	CP 7001	
LANUV	automatischer GC/FID	CP 7001	
LUNG	automatischer GC/PID	GC855 - Synspec	
UBA	automatischer GC/PID	Syntech Spectras 955	
LFU Bozen(I)	automatischer GC/PID	Syntech Spectras 955	
BFUL	automatischer GC/PID	Syntech Spectras 955	
LUBW	automatischer GC/PID	Syntech Spectras 955	
LANUV	automatischer GC/FID	Syntech Spectras 955	bereits ab Angebot 1 Totalausfall
HLUG	automatischer GC/FID	HC 1000	
LUWG RLP	automatischer GC/FID	HC 1000	
LFU Bozen(I)	automatischer GC/PID	Airtoxic – Airmo BTX	
ADENV	automatischer GC/FID	Airmotec	
SenGUV	automatischer GC/FID	AMA GC 5000 FID	
GAA Hildesheim	aktive Probenahme auf NIOSH Röhrchen	GC FID	
LUWG RLP	aktive Probenahme auf Chromosorb 106	Thermodesoption ATD 400 / GC FID	

Messstelle	Messverfahren	Messgerät	Bemerkungen
STUA-IZ	aktive Probenahme		
	auf NIOSH Röhrchen		
	/ Blendenkoffer		
BLFU	aktive Probenahme	Thermodesorption	
	auf Chromosorb 106	Turbomatrix ATD / GC	
		FID	
LANUV	aktive Probenahme	Lösungsmittelextraktion	
	auf	mit CS ₂ / GC-FID	
	Aktivkohleröhrchen		
	mit Desaga-Gerät		
LAU Sachsen-	aktive Probenahme	Lösungsmittelextraktion	
Anhalt	auf	mit CS ₂ / GC-FID	
	Aktivkohleröhrchen		

2. Zusammenfassung

2.1. Prüfgasübersicht

Die Referenzwerte (Sollwerte) wurden in sorgfältiger Abstimmung von LANUV und UBA ermittelt und vorgegeben. Die Unsicherheit der Sollwerte wird bei den Auswertungen berücksichtigt (vergleiche hierzu Abschnitt 3.2). Alle Konzentrationsangaben sind auf 20 °C und 1013 hPa normiert. Bei den Angeboten 7 bis 11 handelt es sich um Prüfgase zur Ermittlung von Querempfindlichkeit bzw. des Memoryeffektes.

Tabelle 4: Benzol

Angebot	Sollwert	Median		ardab- hung
	[µg/m³]	[µg/m³]	[µg/m³]	rel.
1	5,5	5,5	0,42	7,64%
2	0,6	0,5	0,16	26,67%
3	32,3	32,9	2,75	8,51%
4	10,9	11,1	0,85	7,80%
5	2,8	2,9	0,22	7,86%
6	5,5	5,4	0,45	8,18%
8	18,5	18,6	1,54	8,32%
7	5,5	5,4	0,42	7,59%
9	0,0	0,1	0,26	
10	5,5	5,3	0,76	13,74%
11	5,4	5,3	0,59	10,67%

Tabelle 5: Toluol

Angebot	Sollwert	Median		ardab- hung
PG	[µg/m³]	[µg/m³]	[µg/m³]	rel.
1	10,4	10,3	0,76	7,30%
2	1,0	1,1	0,29	29,00%
3	96,7	96,9	11,62	11,66%
4	20,4	20,9	1,50	7,35%
5	5,3	5,6	0,61	11,51%
6	10,4	10,3	0,76	7,31%
8	55,2	54,8	4,91	8,89%
7	10,3	10,1	0,73	7,02%
9	0,0	0,7	1,26	
10	10,4	10,2	0,68	6,54%
11	10,1	9,9	0,77	7,40%

Tabelle 6: Ethylbenzol

Angebot	Sollwert	Median	Standardab- weichung	
PG	[µg/m³]	[µg/m³]	[µg/m³]	rel.
1	4,2	4,1	0,62	14,76%
2	0,4	0,3	0,16	40,00%
3	0,0	0,0	0,00	
4	8,3	8,1	0,79	9,58%
5	2,1	2,1	0,28	13,08%
6	4,2	4,0	0,62	14,76%
8	-	-	_	-
7	4,2	3,8	0,64	15,16%
9	0,0	0,0	0,07	
10	4,2	4,1	0,58	13,72%
11	4,1	4,0	1,20	28,51%

Tabelle 7: m-/p-Xylol

Angebot	Sollwert	Median		ardab- hung
PG	[µg/m³]	[µg/m³]	[µg/m³]	rel.
1	5,1	5,1	0,59	11,57%
2	0,5	0,5	0,28	56,00%
3	45,2	43,9	3,89	8,60%
4	10,0	10,7	0,92	9,20%
5	2,6	2,7	0,45	17,31%
6	5,1	5,0	0,54	10,59%
8	25,8	25,1	1,98	7,67%
7	5,0	4,8	0,72	14,02%
9	0,0	0,3	0,94	
10	5,1	5,2	0,49	9,69%
11	5,0	4,9	0,48	9,37%

Tabelle 8: o-Xylol

Angebot	Sollwert	Median		ardab- hung
PG	[µg/m³]	[µg/m³]	[µg/m³]	rel.
1	5,0	4,9	0,78	15,60%
2	0,5	0,5	0,25	50,00%
3	20,3	18,8	1,77	8,73%
4	9,8	9,9	1,04	10,62%
5	2,5	2,5	0,39	15,35%
6	5,0	4,8	0,67	13,46%
8	11,6	11,1	1,05	9,03%
7	4,9	4,7	0,67	13,37%
9	0,0	0,4	0,34	
10	5,0	4,6	0,71	14,14%
11	4,9	4,9	0,70	13,95%

2.2. Vergleich von Sollwerten und Medianen

Der Vergleich Referenzwerte für Benzol (Sollwerte) mit den Medianen der Teilnehmer zeigt eine befriedigende Übereinstimmung. Es zeigt sich ein geringer systematischer Unterschied zwischen den Vorgabewerten und den Medianen von etwa 2 %, wie die Steigung von 1,019 und einem Achsenabschnitt von - 0,10 beweist.

Die Steigung ist im statistischen Sinne von 1 unterscheidbar, wie der folgende Test zeigt.

$$PG_S = \frac{m-1}{S_m} = 4,4$$

m = Steigung der Kalibriergeraden

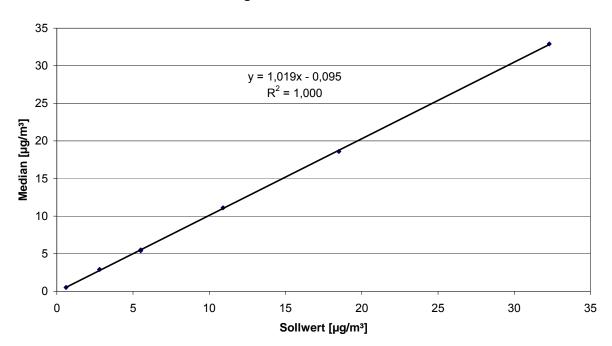
s_m = Standardfehler der Steigung

und für den Achsenabschnitt

$$PG_b = \frac{b-0}{s_b} = 1,45$$

b = Achsenabschnitt

s_b = Standardfehler des Achsenabschnittes


t = 2.31

Der Achsenabschnitt ist daher nicht signifikant von 0 unterscheidbar.

Erreicht oder übersteigt die Prüfgröße den Wert der Student-Verteilung, so ist die Null-Hypothese, die Abweichung ist zufällig, abzulehnen.

Tabelle 9: Vergleich der Sollwerte und Mediane für die Komponente Benzol

Angebot	Sollwert	Median
	[µg/m³]	[µg/m³]
1	5,5	5,5
2	0,6	0,5
3	32,3	32,9
4	10,9	11,1
5	2,8	2,9
6	5,5	5,4
8	18,5	18,6

Benzol: Vergleich von Sollwert und Median

Abbildung 1: Vergleich von Sollwert und Median - Komponente Benzol

Die Reststandardabweichung von 0,12 μg/m³ spricht für die geringe Streuung der Vorgabewerte. Die Vorgabewerte zeigen einen geringen Unterschied zum Median auf. In diesem Zusammenhang muss natürlich auch die Unsicherheit des Median bei einem verhältnismäßig kleinen Datenkollektiv betrachtet werden. Die nachfolgende Tabelle 10 gibt eine Übersicht über die Steigungen und Achsenabschnitte sowie deren Standardunsicherheiten weiterer organischer Komponenten.

Tabelle 10: Zusammenfassung der Parameter der Ausgleichsgeraden für ergänzende Komponenten

•	Steigung	Achsenab-			
Komponente	m	schnitt b	u (m)	u (b)	R²
Toluol	0,999	0,10	0,004	0,16	1,000
Ethylbenzol	0,984	-0,05	0,009	0,04	1,000
m-/p-Xylol	0,967	0,26	0,010	0,04	1,000
o-Xylol	0,930	0,24	0,019	0,19	0,998

Für die Komponenten Toluol und Ethylbenzol lässt sich keine Abweichung der Steigung von 1 nachweisen. Bei der Komponente m-/p-Xylol weicht die Steigung signifikant um -3,3 % von 1 ab und weist einen geringen Achsenabschnitt von 0,26 auf. Beim o-Xylol ist die Steigung mit 0,93 -7 % signifikant kleiner als 1.

3. Auswertung

3.1. Z-Score-Auswertung

Die Prüfgasangebote 3, 4 und 5 wurden für die Komponente Benzol mit einer z-Score-Auswertung ausgewertet. Die Unsicherheit des Vorgabewertes (Referenzwertes) wurde wie unter 3.2 beschrieben ermittelt. Von 23 Teilnehmern hat ein Teilnehmer die Anforderungen nicht bestanden. Hier zeigten sich insbesondere bei der mittleren Prüfgaskonzentration des Angebotes PG4 Abweichungen. Die Abweichungen der Teilnehmer vom Sollwert nehmen mit steigender Konzentration leicht zu.

Tabelle 11: Z-Score Auswertung Benzol

	PC	33	P	G4	PG5		Bewertung
	Sollwert	32 μg/m³	Sollwert	11 μg/m³	Sollwert	3 μg/m³	
	u_{Lab}	4 μg/m³	u_{Lab}	1 μg/m³	u_0	1 μg/m³	
	U _{ref}	2 μg/m³	U _{ref}	1 μg/m³	U _{ref}	0 μg/m³	
	σ	2,2 μg/m³	σ	0,7 μg/m³	σ	0,5 μg/m³	
	Mess-		Mess-		Mess-		Teilnahme
TN	wert	Zi	wert	Zi	wert	Zi	erfolgreich
	[µg/m³]		[µg/m³]		[µg/m³]		enoigreich
1	31,95	0,0 +	10,63	-0,5 +	2,69	-0,6 +	ja
2	34,72	1,2 +	11,54	0,8 +	2,95	-0,1 +	ja
3	32,17	0,1 +	10,94	-0,1 +	3,04	0,1 +	ja
4	32,92	0,4 +	11,09	0,1 +	2,88	-0,2 +	ja
5	33,51	0,7 +	11,13	0,2 +	2,80	-0,4 +	ja
6	33,06	0,5 +	11,28	0,4 +	2,99	0,0 +	ja
7	А		11,20	0,3 +	3,27	0,5 +	ja
8	28,98	-1,4 +	10,36	-0,9 +	3,08	0,2 +	ja
9	37,01	2,3 ~	11,74	1,1 +	2,82	-0,4 +	ja
10	32,52	0,2 +	11,17	0,2 +	2,90	-0,2 +	ja
11	33,50	0,7 +	12,53	2,2 ~	2,88	-0,2 +	ja
13	А		10,40	-0,9 +	2,81	-0,4 +	ja
14	35,32	1,5 +	11,46	0,7 +	3,01	0,0 +	ja
15	А		11,07	0,1 +	2,59	-0,8 +	ja
16	28,05	-1,8 +	8,85	-3,1 -	2,34	-1,3 +	nein
17	25,82	-2,8 ~	9,97	-1,5 +	2,82	-0,4 +	ja
18	28,78	-1,5 +	9,61	-2,0 +	2,54	-0,9 +	ja
19	34,20	1,0 +	11,40	0,6 +	3,00	0,0 +	ja
20	33,58	0,7 +	12,07	1,5 +	3,24	0,5 +	ja
21	33,02	0,5 +	10,88	-0,2 +	2,79	-0,4 +	ja
22	31,50	-0,2 +	10,65	-0,5 +	2,77	-0,5 +	ja
23	30,05	-0,9 +	9,68	-1,9 +	2,68	-0,6 +	ja

 u_{Lab} : 12,5 % u_0 : 1 $\mu g/m^3$

A = Anerkannter Ausfall

+ = Ergebnis zufriedenstellend

~ = Ergebnis fraglich

- = Ergebnis unzureichend

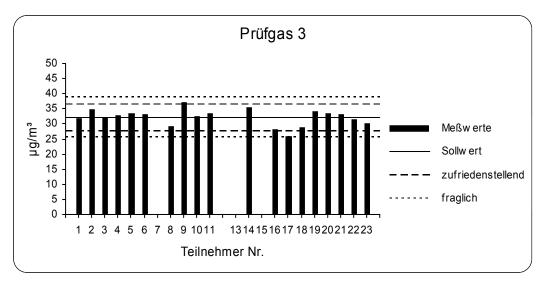


Abbildung 2: Vergleichende Übersicht über das Prüfgasangebot 3 für die Komponente Benzol

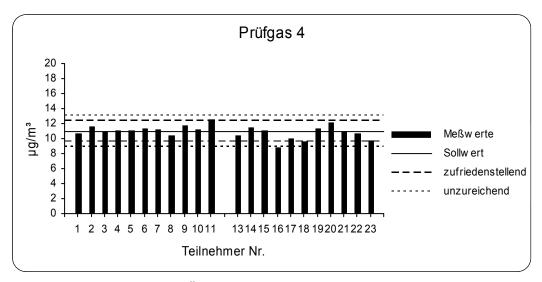


Abbildung 3: Vergleichende Übersicht über das Prüfgasangebot 4 für die Komponente Benzol

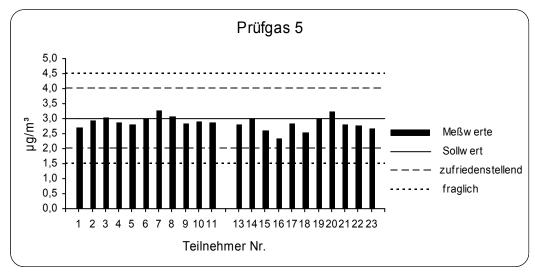


Abbildung 4: Vergleichende Übersicht über das Prüfgasangebot 5 für die Komponente Benzol

3.2. Ermittlung der Sollkonzentration und der Messunsicherheit

Die Referenzwerte (Sollwerte) wurden in Abstimmung von LANUV und UBA ermittelt und vorgegeben. Die kombinierte Unsicherheit des Referenzwertes wird gemäß dem Leitfaden zur Unsicherheit beim Messen bestimmt.

Zunächst wurden alle Einflussgrößen der Messunsicherheit ermittelt und die Eingangsgrößen in einer geeigneten Modellgleichung zur Berechnung der Konzentration verknüpft. Die Unsicherheiten der Eingangsgrößen wurde entweder experimentell (GUM-Methode A) oder durch geeignete Expertenschätzung (GUM-Methode B) ermittelt. Die Unsicherheitsbeiträge sowie die kombinierte Unsicherheit des Referenzwertes wurden mit dem Programm GUM-Workbench berechnet.

Die zulässige Unsicherheit eines Teilnehmermesswertes erfolgt in Anlehnung an die Durchführungsbestimmung für Messstellen im Sinne des § 26 BImSchG. Die Unsicherheit $U_{Vorgabe}$ setzt sich zusammen aus der Unsicherheit des Referenzwertes und der zulässigen Unsicherheit des Teilnehmermesswertes U_{Lab} , bzw. in der Nähe des Nullpunktes der Unsicherheit des Nullpunktes U_0 .

Die zulässige Unsicherheit U_{Lab} des Teilnehmermesswertes leitet sich von den Qualitätszielen der EU-Tochterrichtlinien ab. Sie beträgt für die Komponente Benzol 12,5 % des Sollwertes. Dies entspricht der Hälfte der Präzisionsvorgabe der EU-Tochterrichtlinie.

Für Messungen in der Nähe des Nullpunktes wird die Unsicherheit als beste Schätzung angenommen mit:

 $\begin{array}{ll} \text{Komponente} & U_0 \\ \text{Benzol} & 1 \ \mu\text{g/m}^3 \end{array}$

Die erweitere Unsicherheit des Vorgabewertes wird berechnet nach für $U_{\text{Lab}} > U_0$

$$U_{\textit{Vorgabe}} = \sqrt{U_{\textit{ref}}^{\,2} + U_{\textit{lab}}^{\,2}}$$

und für U_{Lab} ≤ U₀

$$U_{\textit{Vorgabe}} = \sqrt{U_{\textit{ref}}^2 + U_0^2}$$

Die zulässige Standardunsicherheit des Teilnehmermesswertes beträgt dann:

$$\sigma = U_{Vorgabe} / 2$$

3.3. Ergebnisse der einzelnen Prüfgasangebote

3.3.1. Angebot 1

Tabelle 12: Teilnehmermesswerte für das Prüfgasangebot 1

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	5,4	10,4	4,1	5,1	4,3
2	5,8	10,0	4,3	4,6	4,6
3	5,9	11,3	5,1	5,5	5,3
4	5,5	10,2		5,2	5,1
5	5,5	11,1		5,8	
6	5,7	10,5	4,3	5,2	5,1
7	5,9	11,1		4,8	
8	5,3	10,6	4,3	5,1	4,9
9	5,3	10,5	3,2	5,8	3,1
10	5,5	10,2		5,0	4,9
11	5,7	10,6	4,1	5,1	
12					
13	5,2	10,3	4,5	6,0	5,6
14	5,4	10,8	4,1	5,4	5,3
15	4,9	8,2	2,5	3,5	3,1
16	4,2	9,8	3,9	4,8	4,3
17	5,1	9,8	4,3	5,3	5,5
18	4,9	9,0	3,8	4,6	4,4
19	5,9	11,5	5,1	6,2	5,7
20	5,9	10,2	3,6	4,4	3,7
21	5,5	9,8	4,1	5,2	5,3
22	5,4	10,1	4,0	4,9	4,8
23					

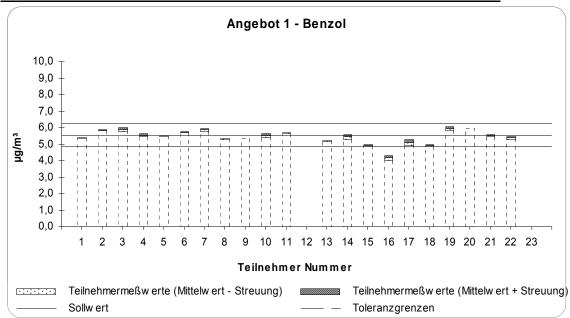


Abbildung 5: Vergleich der Teilnehmermesswerte des Angebotes 1 für die Komponente Benzol

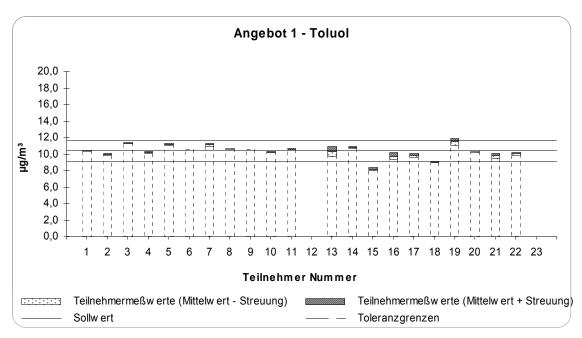


Abbildung 6: Vergleich der Teilnehmermesswerte des Angebotes 1 für die Komponente Toluol

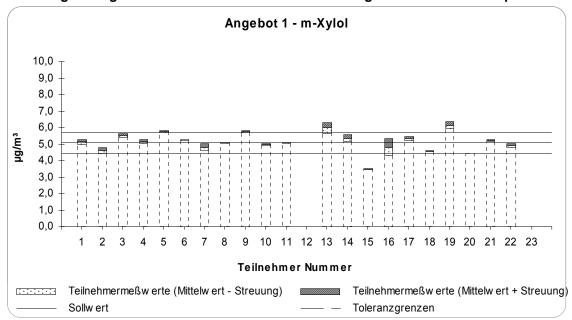


Abbildung 7: Vergleich der Teilnehmermesswerte des Angebotes 1 für die Komponente m-Xylol

3.3.2. Angebot 2

Tabelle 13: Teilnehmermesswerte für das Prüfgasangebot 2

Teilnehmer	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	0,5	1,1	0,3	0,3	0,1
2	0,6	1,0	0,1	0,1	0,0
3	0,8	1,7	0,5	0,6	0,6
4	0,6	1,0		0,5	0,5
5	0,5	1,1		0,6	
6	0,6	1,1	0,5	0,6	0,6
7	0,5	1,1		0,5	
8	0,1	1,4	0,3	0,4	0,2
9	0,6	1,2	0,3	1,3	0,2
10	0,5	1,0		0,5	0,5
11	0,5	1,7	0,3	0,5	
12					
13	0,6	1,4	0,6	0,8	0,7
14					
15	0,3	0,6	0,2	0,3	0,2
16	0,3	1,7	0,5	0,7	0,5
17	0,6	1,4	0,5	0,8	0,7
18					
19					
20					
21					
22	0,4	1,0	0,4	0,4	0,4
23					

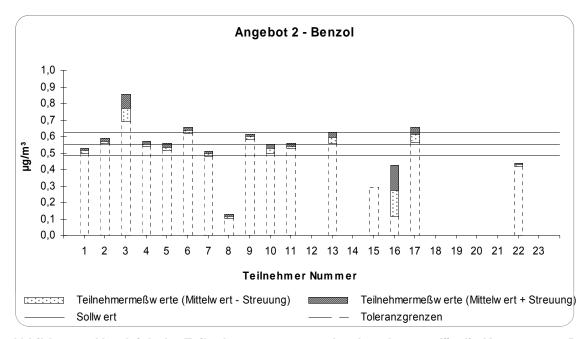


Abbildung 8: Vergleich der Teilnehmermesswerte des Angebotes 2 für die Komponente Benzol

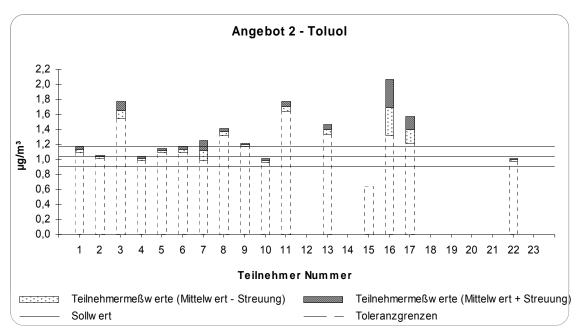


Abbildung 9: Vergleich der Teilnehmermesswerte des Angebotes 2 für die Komponente Toluol

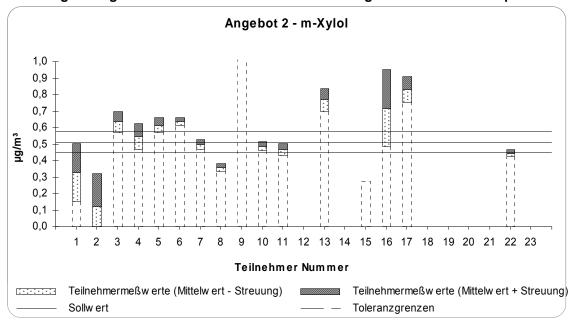


Abbildung 10: Vergleich der Teilnehmermesswerte des Angebotes 2 für die Komponente m-Xylol

3.3.3. Angebot 3

Tabelle 14: Teilnehmermesswerte für das Prüfgasangebot 3

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	32,0	98,0		44,7	18,5
2	34,7	94,2		41,1	18,5
3	32,2	98,3		44,7	20,1
4	32,9	97,7		46,6	20,5
5	33,5	108,5		49,8	
6	33,1	97,8	0,0	44,0	19,9
7	Α	Α		Α	
8	29,0	92,1		40,9	16,8
9	37,0	104,6	0,1	43,6	17,8
10	32,5	97,1		46,8	20,2
11	33,5	99,2		45,6	
12					
13	Α	Α			
14	35,3	107,7		52,0	22,7
15	Α	86,6	0,1	43,7	16,7
16	28,1	93,6		42,2	17,6
17	25,8	52,8	0,3	36,0	19,8
18	28,8	84,3	0,0	39,1	17,0
19	34,2	102,9	0,6	51,2	21,1
20	33,6	96,8	1,4	41,0	16,7
21	33,0	91,8	0,0	46,2	21,3
22	31,5	94,9	0,0	43,3	19,1
23	30,1	90,0	0,0	43,8	18,3

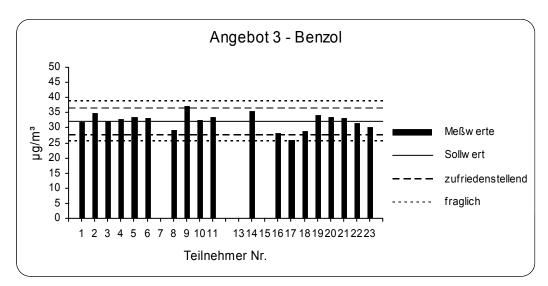


Abbildung 11: Vergleich der Teilnehmermesswerte des Angebotes 3 für die Komponente Benzol

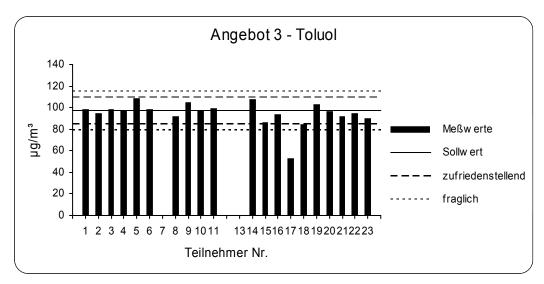


Abbildung 12:Vergleich der Teilnehmermesswerte des Angebotes 3 für die Komponente Toluol

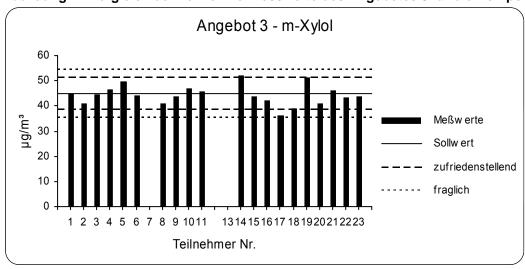


Abbildung 13: Vergleich der Teilnehmermesswerte des Angebotes 3 für die Komponente m-Xylol

3.3.4. Angebot 4

Tabelle 15: Teilnehmermesswerte für das Prüfgasangebot 4

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	10,6	20,8	8,0	10,2	8,9
2	11,5	19,8	8,3	9,1	9,2
3	10,9	22,5	9,2	11,0	10,4
4	11,1	20,3		11,0	10,5
5	11,1	22,6		11,5	
6	11,3	21,3	8,3	10,8	10,2
7	11,2	22,4		10,1	
8	10,4	21,3	8,3	11,2	9,9
9	11,7	21,5	6,5	11,1	8,1
10	11,2	20,4		11,1	10,3
11	12,5	22,9	9,3	11,4	
12					
13	10,4	20,8	8,5	12,6	11,3
14	11,5	22,3		11,6	11,3
15	11,1	20,3	6,8	10,4	8,4
16	8,9	20,9	7,5	10,6	9,2
17	10,0	18,7	8,1	10,5	10,7
18	9,6	17,6	7,2	8,8	8,4
19	11,4	21,4	9,3	11,5	10,5
20	12,1	21,0	8,2	10,2	8,7
21	10,9	18,5	8,0	10,2	10,6
22	10,7	19,7	7,8	9,6	9,5
23	9,7	18,0	7,5	9,1	8,3

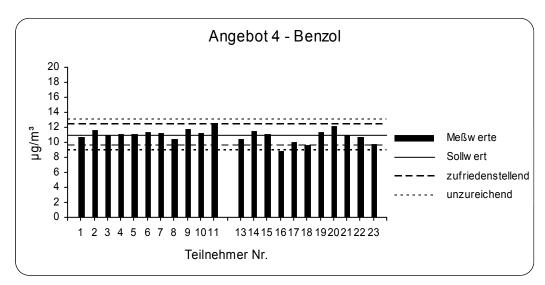


Abbildung 14: Vergleich der Teilnehmermesswerte des Angebotes 4 für die Komponente Benzol

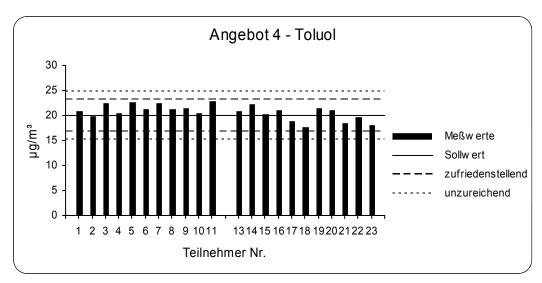


Abbildung 15: Vergleich der Teilnehmermesswerte des Angebotes 4 für die Komponente Toluol

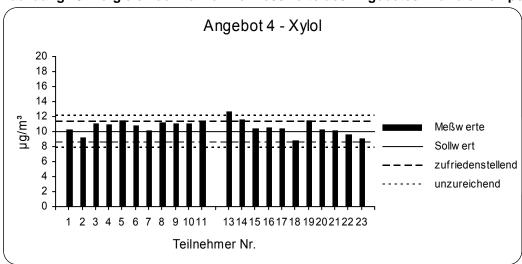


Abbildung 16: Vergleich der Teilnehmermesswerte des Angebotes 4 für die Komponente m-Xylol

3.3.5. Angebot 5

Tabelle 16: Teilnehmermesswerte für das Prüfgasangebot 5

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	2,7	5,4	2,3	2,9	2,2
2	3,0	5,2	2,1	2,4	2,4
3	3,0	5,9	2,6	3,4	2,9
4	2,9	5,2		2,7	2,5
5	2,8	5,7		2,9	
6	3,0	5,6	2,2	2,9	2,7
7	3,3	6,7		3,3	
8	3,1	6,7	2,2	2,6	2,5
9	2,8	5,6	1,7	4,0	1,7
10	2,9	5,2		2,7	2,5
11	2,9	6,2	1,9	2,3	
12					
13	2,8	5,8	2,4	3,0	2,9
14	3,0	6,3		3,5	2,9
15	2,6	4,7	1,4	2,4	2,0
16	2,3	6,3	2,3	3,4	2,8
17	2,8	5,8	2,2	3,0	2,9
18	2,5	4,7	1,9	2,4	2,3
19	3,0	5,6	2,5	2,8	2,7
20	3,2	5,5	2,1	2,7	1,7
21	2,8	4,7	2,1	2,6	2,8
22	2,8	5,0	2,0	2,5	2,4
23	2,7	4,9	2,1	2,6	2,3

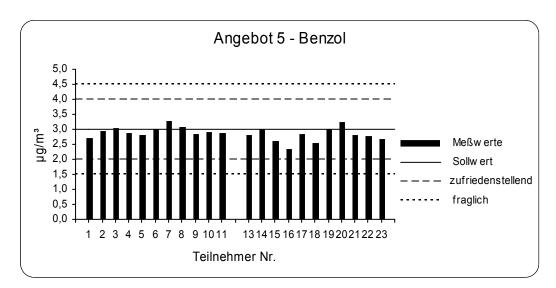


Abbildung 17: Vergleich der Teilnehmermesswerte des Angebotes 5 für die Komponente Benzol

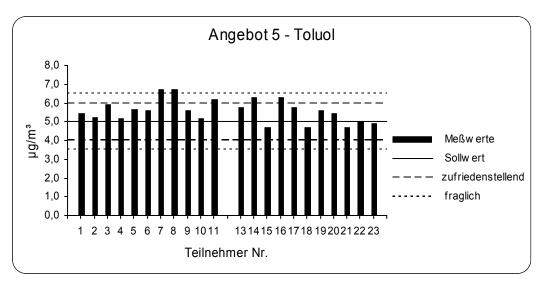


Abbildung 18: Vergleich der Teilnehmermesswerte des Angebotes 5 für die Komponente Toluol

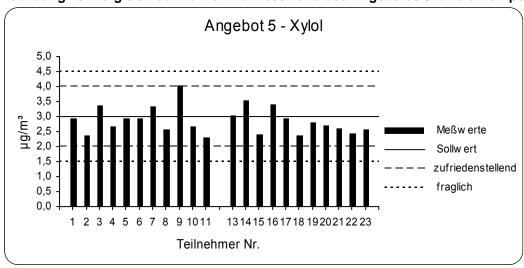


Abbildung 19: Vergleich der Teilnehmermesswerte des Angebotes 5 für die Komponente m-Xylol

3.3.6. Angebot 6

Tabelle 17: Teilnehmermesswerte für das Prüfgasangebot 6

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	5,3	10,3	4,0	5,0	4,4
2	5,8	9,9	4,3	4,6	4,7
3	5,8	10,9	5,1	5,3	5,2
4	5,5	10,2		5,0	5,0
5	5,5	11,1		5,6	
6	5,7	10,6	4,3	5,3	5,1
7	5,7	10,9		4,8	
8	5,5	10,8	4,5	5,4	5,0
9	5,4	10,4	3,2	5,8	3,2
10	5,5	10,2		5,0	5,0
11	5,6	11,5	3,9	4,9	
12					
13	5,0	9,8	3,9	4,7	4,7
14	5,6	11,0		6,0	5,3
15	5,2	8,9	2,9	4,1	3,6
16	4,2	9,5	3,8	4,8	4,2
17	4,9	9,5	4,2	5,1	5,4
18	4,8	8,8	3,6	4,4	4,3
19	6,0	11,4	5,3	6,3	5,8
20	6,3	9,9	3,6	4,5	4,0
21					
22	5,4	10,0	4,0	4,9	4,8
23					

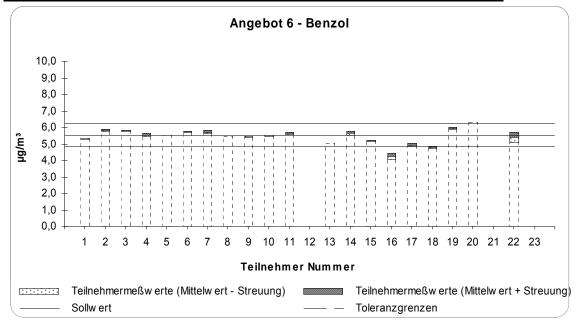


Abbildung 20: Vergleich der Teilnehmermesswerte des Angebotes 6 für die Komponente Benzol

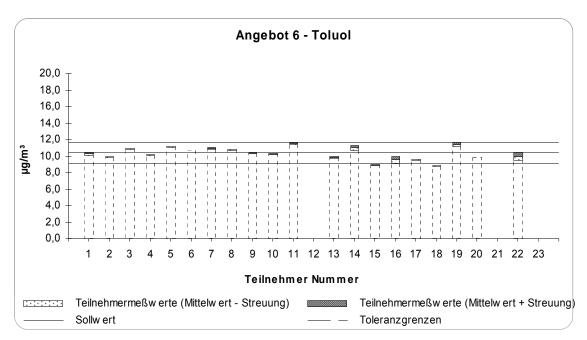


Abbildung 21: Vergleich der Teilnehmermesswerte des Angebotes 6 für die Komponente Toluol

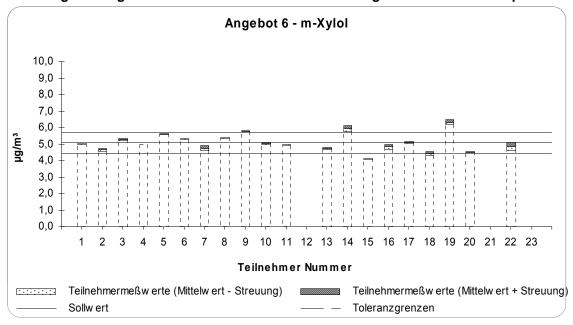


Abbildung 22: Vergleich der Teilnehmermesswerte des Angebotes 6 für die Komponente m-Xylol

3.3.7. Angebot 7

Tabelle 18: Teilnehmermesswerte für das Prüfgasangebot 7

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	5,3	10,1	4,0	4,9	4,8
2	5,9	9,8	4,2	4,6	4,7
3	5,7	10,5	5,0	5,3	5,0
4	5,5	10,1		5,0	5,4
5	5,4	10,1		3,1	
6	5,6	10,5	4,2	5,2	5,0
7	5,6	10,9		4,5	
8	5,4	10,3	4,5	5,3	4,7
9	5,4	10,0	3,0	5,4	3,1
10	5,4	10,4		5,9	5,3
11					
12					
13	5,0	9,3	3,8	4,7	4,4
14	5,6	10,3		4,8	4,9
15	5,1	8,4	2,8	3,9	3,5
16	4,1	8,6	3,4	4,1	4,0
17	4,8	8,7	3,4	3,8	4,1
18					
19					
20					
21					
22	5,5	9,9	3,5	4,5	4,4
23					

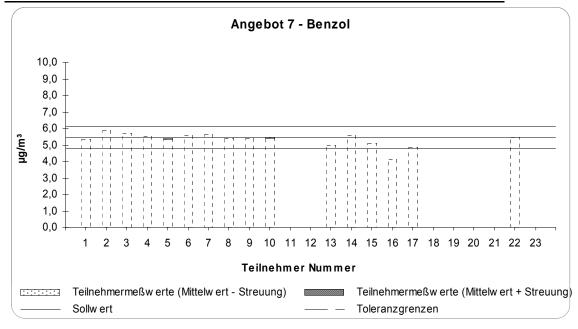


Abbildung 23: Vergleich der Teilnehmermesswerte des Angebotes 7 für die Komponente Benzol

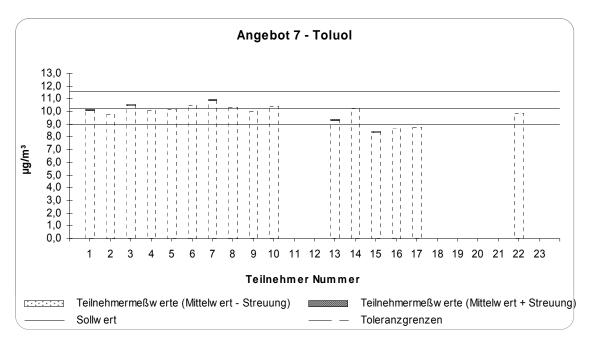


Abbildung 24: Vergleich der Teilnehmermesswerte des Angebotes 7 für die Komponente Toluol

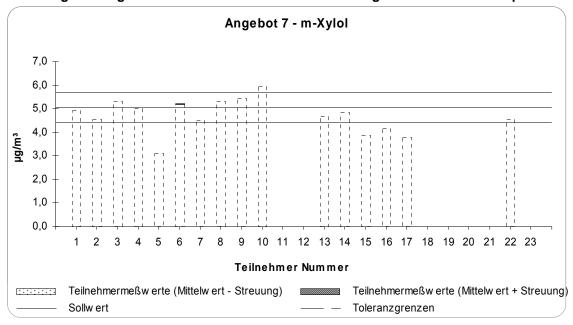


Abbildung 25: Vergleich der Teilnehmermesswerte des Angebotes 7 für die Komponente m-Xylol

3.3.8. Angebot 8

Tabelle 19: Teilnehmermesswerte für das Prüfgasangebot 8

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	18,1	54,3	-	25,2	10,3
2	19,6	52,9	-	22,7	10,5
3	18,6	56,6	-	26,1	11,7
4	18,5	55,5	-	26,2	11,7
5	18,6	60,4	-	28,0	
6	18,9	56,0	-	25,2	11,5
7	20,9	54,7	-	24,3	
8	16,8	51,7	-	23,2	11,0
9	20,7	54,0	-	25,7	9,3
10	18,6	55,8	-	25,7	11,6
11			-		
12			-		
13	17,3	54,9	-	22,5	10,5
14	19,5	59,5	-	28,9	12,5
15	18,8	55,2	-	24,7	9,4
16	15,2	50,1	-	22,4	9,2
17	15,8	38,2	-	22,1	12,0
18			-		
19			-		
20			-		
21			-		
22	18,1	54,6	-	25,0	11,1
23			-		

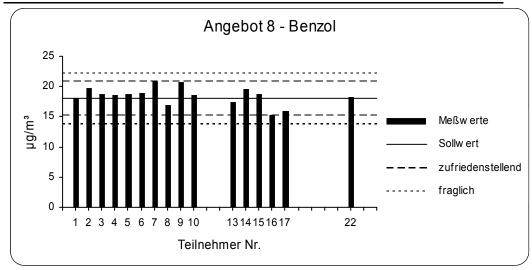


Abbildung 26: Vergleich der Teilnehmermesswerte des Angebotes 8 für die Komponente Benzol

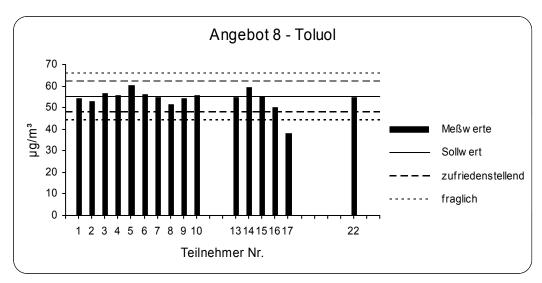


Abbildung 27: Vergleich der Teilnehmermesswerte des Angebotes 8 für die Komponente Toluol

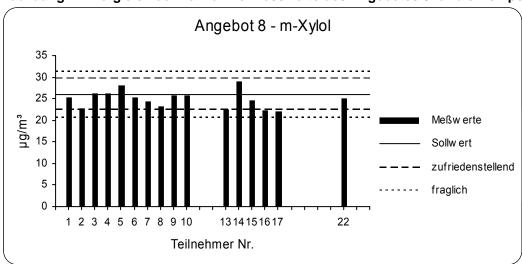


Abbildung 28: Vergleich der Teilnehmermesswerte des Angebotes 8 für die Komponente m-Xylol

3.3.9. Angebot 9

Tabelle 20: Teilnehmermesswerte für das Prüfgasangebot 9

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	0,1	0,6	0,0	0,3	0,0
2	0,1	0,7	0,0	0,3	0,0
3	0,5	1,8		1,1	0,7
4	0,1	0,2		0,0	0,0
5	0,0	0,1		0,1	
6	0,0	0,0	0,0	0,2	0,1
7	0,0	0,2		0,1	
8	0,8	4,2	0,0	1,8	0,7
9	0,7	2,8	0,2	2,8	0,4
10	0,0	0,5		0,2	0,3
11					
12					
13	0,4	1,9	0,1	1,4	0,8
14	0,4	0,7		1,7	0,7
15	0,0	0,2	0,0	0,3	0,0
16	0,3	2,9	0,0	2,4	0,9
17	0,1	1,1	0,1	1,6	0,6
18					
19					
20					
21	0,1	0,1	0,0	0,0	0,0
22					
23					

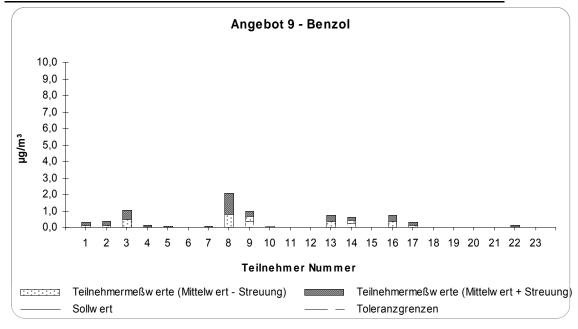


Abbildung 29: Vergleich der Teilnehmermesswerte des Angebotes 9 für die Komponente Benzol

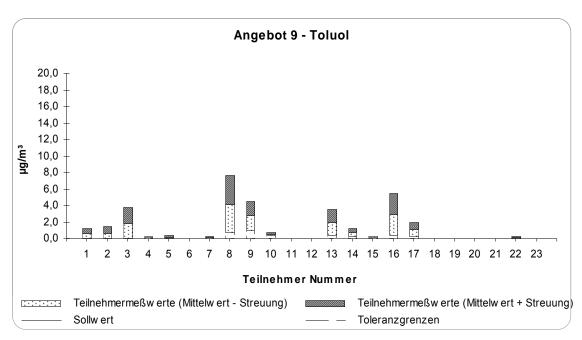


Abbildung 30: Vergleich der Teilnehmermesswerte des Angebotes 9 für die Komponente Toluol

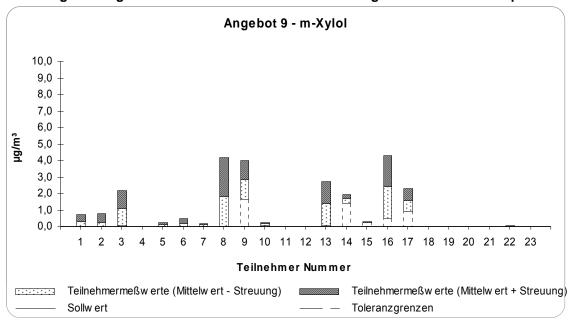


Abbildung 31: Vergleich der Teilnehmermesswerte des Angebotes 9 für die Komponente m-Xylol

3.3.10. Angebot 10

Tabelle 21: Teilnehmermesswerte für das Prüfgasangebot 10

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	5,3	10,5	4,0	5,1	4,3
2	5,8	10,0	4,3	4,7	4,6
3	5,9	10,7	5,0	5,6	5,2
4	5,5	10,3		5,2	5,0
5	5,3	11,2		5,6	
6	5,7	10,7	4,2	5,4	5,1
7					
8	5,3	10,2	4,3	5,3	4,8
9	4,0	10,2	3,0	5,7	3,1
10	3,1	10,3		5,4	5,2
11					
12					
13	5,1	9,4	3,8	4,6	4,6
14	5,6	10,8		5,7	5,5
15	5,2	8,9	2,8	4,0	3,4
16	3,9	9,6	3,6	4,8	4,0
17	4,3	9,3	4,1	5,1	5,9
18	5,0	9,2	3,8	4,7	4,5
19	5,9	11,2	5,0	6,1	5,5
20	6,0	10,6	4,2	5,2	4,5
21	5,5	9,6	4,1	5,3	5,3
22	5,3	9,6	3,7	4,6	4,4
23	5,3	9,5	4,0	5,0	4,6

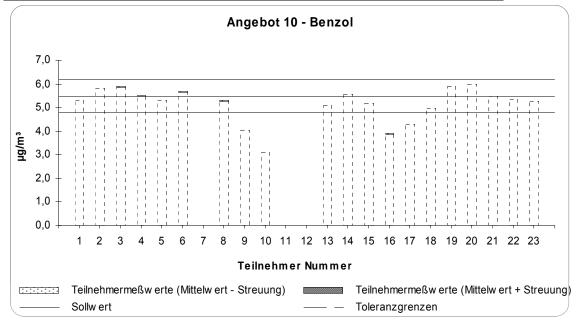


Abbildung 32: Vergleich der Teilnehmermesswerte des Angebotes 10 für die Komponente Benzol

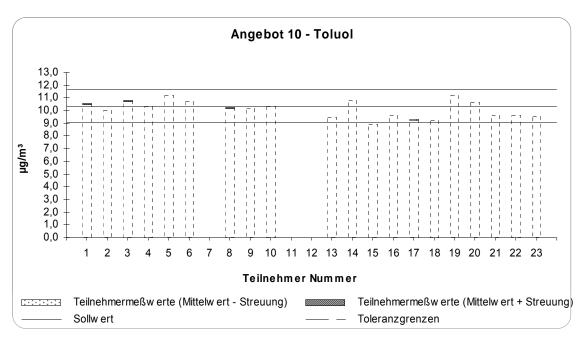


Abbildung 33: Vergleich der Teilnehmermesswerte des Angebotes 10 für die Komponente Toluol

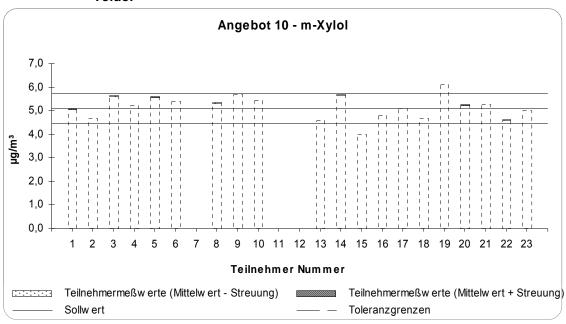


Abbildung 34: Vergleich der Teilnehmermesswerte des Angebotes 10 für die Komponente m-Xylol

3.3.11. Angebot 11

Tabelle 22: Teilnehmermesswerte für das Prüfgasangebot 11

Teilnehmer-	Benzol	Toluol	Ethylbenzol	m/p-Xylol	o-Xylol
Nr.	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	5,2	10,1	3,7	4,6	3,9
2	5,7	9,6	4,3	4,4	4,2
3	5,7	10,5	5,3	5,4	5,2
4	5,5	11,3		4,9	4,9
5	5,3	11,0		5,4	
6	6,1	10,4	4,9	5,4	5,1
7					
8	4,9	9,9	4,4	5,2	5,0
9	3,7	9,1	3,0	5,5	3,0
10	5,3	10,8		6,1	6,0
11					
12					
13	5,1	9,3	3,8	4,3	4,6
14	5,5	10,5		5,5	5,5
15	5,5	9,4	0,0	4,7	4,4
16	3,8	9,1	3,9	4,8	4,3
17	4,9	9,1	4,1	4,9	5,4
18	4,8	9,0	3,8	4,5	4,4
19	5,7	10,8	4,7	5,7	5,4
20					
21	5,3	9,0	4,0	5,0	5,2
22	5,4	9,9	3,9	4,8	4,8
23	5,2	9,3	4,1	4,9	4,5

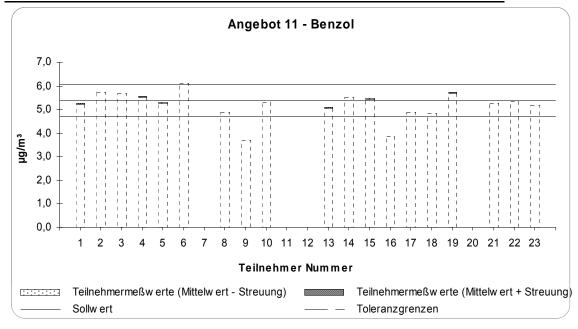


Abbildung 35: Vergleich der Teilnehmermesswerte des Angebotes 11 für die Komponente Benzol

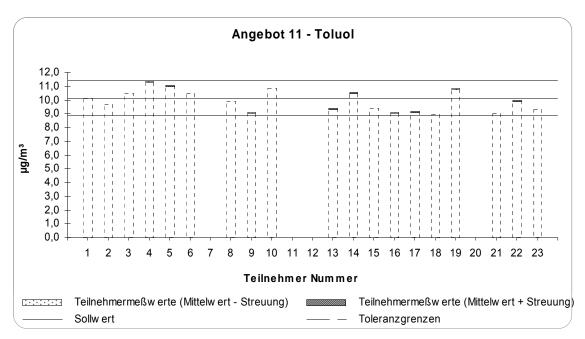


Abbildung 36: Vergleich der Teilnehmermesswerte des Angebotes 11 für die Komponente Toluol

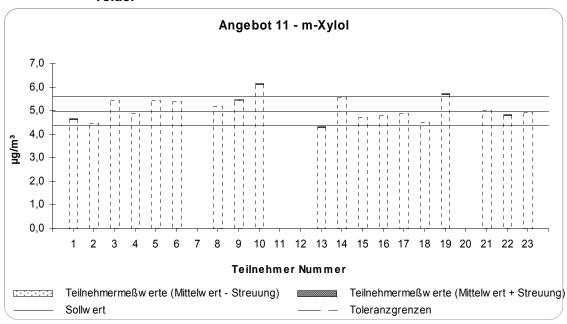


Abbildung 37: Vergleich der Teilnehmermesswerte des Angebotes 11 für die Komponente m-Xylol

3.4. Wiederholpräzision nach DIN EN 14662-3

Die Wiederholpräzision ri wird nach DIN EN 14662 wie folgt berechnet

 $r_i = t_{n-1;0,05} \cdot s_r(c)$

$$s_r(c) = \sqrt{\frac{\sum (c_i - \overline{c})^2}{n-1}}$$

r_i Wiederholpräzision

t_{n-1;0,05} Zweiseitiger t-Faktor beim 95 %-Vertrauensbereich

s_r(c) Wiederholstandardabweichung

c_i die i-te Einzelmessung bei der Testkonzentration

 \overline{c} Mittelwert der Einzelmessungen der Testkonzentration

Aus den Benzol-Messwerten des Prüfgasangebotes 1 am Grenzwert wurde die relative Wiederholpräzision berechnet. Sie muss in der Eignungsprüfung kleiner als 5 % sein. Bei zwei Teilnehmern wird dieses Kriterium knapp, bei zwei weiteren Teilnehmern deutlich überschritten.

Tabelle 23: Ermittlung der Wiederholstandardabweichung am Grenzwert

Т				M	esswer	te [µg/n	1³]				\overline{c}	n	Sr	Sr	r _i
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[%]
1	5,39	5,41	5,33	5,36	5,36	5,38	5,38	5,36	5,33	5,39	5,37	10	0,03	0,48	1,10
2	5,85	5,83	5,89	5,80	5,83	5,89	5,77	5,83	5,81	5,80	5,83	10	0,04	0,66	1,50
3	5,79	5,88	5,69	5,79	5,99	5,87	5,97	5,94	5,91	5,93	5,88	10	0,09	1,60	3,62
4	5,47	5,64	5,54	5,46	5,43	5,53	5,64	5,65	5,51	5,57	5,54	10	0,08	1,44	3,25
5	5,44	5,48	5,50	5,51	5,48	5,49	5,50	5,50	5,51	5,47	5,49	10	0,02	0,39	0,89
6	5,70	5,74	5,66	5,66	5,70	5,71	5,76	5,69	5,72	5,70	5,70	10	0,03	0,55	1,24
7					5,75	5,85	5,92	5,96	5,93	5,78	5,87	6	0,09	1,47	3,77
8	5,37	5,31	5,35	5,36	5,30	5,31	5,32	5,29	5,31	5,25	5,32	10	0,04	0,67	1,51
9	5,34	5,34	5,31	5,34	5,34	5,31	5,34	5,34	5,28	5,31	5,33	10	0,02	0,40	0,90
10	5,88	5,57	5,54	5,55	5,47	5,41	5,43	5,46	5,42	5,39	5,51	10	0,14	2,61	5,90
11	5,62	5,62	5,64	5,64	5,66	5,71	5,67	5,72	5,69	5,70	5,67	10	0,04	0,65	1,47
12															
13	5,15	5,19	5,23	5,19	5,20	5,14	5,24	5,20	5,23	5,06	5,18	10	0,05	1,05	2,36
14	5,29	5,56	5,50	5,51	5,58	5,35	5,31	5,37	5,26	5,67	5,44	10	0,14	2,60	5,88
15	4,94	4,97	4,91	4,97	4,88	4,94	4,88	4,91	4,84	4,91	4,92	10	0,04	0,84	1,91
16	3,99	4,29	4,03	4,03	4,45	4,19	4,19	4,12	4,22	4,16	4,17	10	0,14	3,30	7,47
17	5,10	5,31	5,07	5,41	4,94	4,95	5,13	4,94	4,89	5,29	5,10	10	0,18	3,55	8,04
18	4,88	4,86	4,95	5,00							4,92	4	0,06	1,31	4,17
19	6,10	6,00	6,00	6,00	5,80	5,90	5,90	5,80			5,94	8	0,11	1,79	4,22
20	5,92										5,92	1	-	-	
21	5,50	5,43	5,62	5,48							5,51	4	0,08	1,46	4,66
22	5,39	5,54	5,28	5,33	5,34	5,38	5,43				5,38	7	0,08	1,56	3,81

Mit den Messwerten des Angebotes 2 wurde die Wiederholpräzision der Teilnehmer für $0.5~\mu g/m^3$ berechnet. Sie muss kleiner als $0.3~\mu g/m^3$ sein. Nur ein Teilnehmer kann diese Anforderung nicht einhalten. Dieser Teilnehmer hält auch die Anforderungen an die Wiederholpräzision am Grenzwert nicht ein.

Tabelle 24: Wiederholstandardabweichung für 0,5 µg/m³

Т				М	esswer	te [µg/n	n³]	,- [-3			\overline{c}	n	S_{r}	r _i
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[µg/m³]
1	0,53	0,52	0,51	0,50	0,50	0,53	0,53	0,49	0,50	0,52	0,51	10	0,01	0,03
2	0,59	0,57	0,58	0,57	0,55	0,58	0,57	0,57	0,59	0,55	0,57	10	0,01	0,03
3	0,77	0,91	0,78	0,65	0,74	0,76	0,74	0,71	0,75	0,91	0,77	10	0,08	0,18
4	0,54	0,54	0,58	0,55	0,55	0,55	0,54	0,58	0,56	0,55	0,55	10	0,02	0,03
5	0,55	0,55	0,55	0,53	0,54	0,54	0,50	0,50	0,55	0,55	0,54	10	0,02	0,05
6	0,65	0,62	0,63	0,64	0,65	0,60	0,63	0,65	0,62	0,66	0,64	10	0,02	0,04
7	0,50	0,48	0,49	0,50	0,47	0,48	0,49	0,52	0,51	0,51	0,50	10	0,02	0,04
8	0,13	0,13	0,13	0,12	0,12	0,12	0,11	0,09	0,10	0,10	0,12	10	0,01	0,03
9	0,61	0,61	0,61	0,61	0,61	0,61	0,58	0,58	0,58	0,58	0,60	10	0,02	0,04
10	0,55	0,49	0,55	0,55	0,48	0,53	0,53	0,49	0,54	0,54	0,53	10	0,03	0,06
11	0,56	0,55	0,55	0,55	0,55	0,53	0,54	0,51	0,55	0,52	0,54	10	0,02	0,04
12														
13	0,65	0,62	0,61	0,59	0,53	0,59	0,59	0,59	0,57	0,57	0,59	10	0,03	0,07
14														
15	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	10	0,00	0,00
16	0,58	0,39	0,36	0,13	0,10	0,36	0,19	0,10	0,26	0,23	0,27	10	0,15	0,35
17	0,60	0,66	0,61	0,56	0,56	0,67	0,60	0,66	0,64	0,55	0,61	10	0,05	0,10
18														
19														
20														
21														
22	0,44	0,43	0,42	0,43	0,44	0,42					0,43	6	0,01	0,02

Ergänzend wurde die Wiederholstandardabweichung auch für weitere Komponenten in Anlehnung an die DIN EN 14662-3 im Anhang 4.1.

3.5. Kurzzeitdrift

Aus der Differenz der Mittelwerte der Prüfgas-Angebote 1 und 6 wurde der Kurzzeitdrift wie folgt ermittelt.

Der Kurzzeitdrift wird berechnet nach

$$d_{24h} = \frac{\left|\overline{c}_n - \overline{c}_{n-1}\right|}{\overline{c}_n} \cdot 100\%$$

mit

d_{24h} relativer Drift innerhalb 24h

 \overline{c}_n Mittelwert der Prüfkonzentration am Anfang der Testperiode (PG1)

 $\overline{c}_{\scriptscriptstyle n-1}$ Mittelwert der Prüfkonzentration am Ende der Testperiode (PG6)

Die Differenzen der Benzolkonzentrationen sind sowohl positiv wie auch negativ und annähernd normalverteilt. Der Kurzzeitdrift soll 5 %, nach DIN EN 14662-3, nicht überschreiten. Zwei Teilnehmer halten diese Anforderungen nicht ein.

Tabelle 25: Vergleich des Kurzzeitdriftes der Teilnehmerverfahren

Teilnehmer-	Differenz	d _{24h}
Nr.	[µg/m³]	
1	-0,06	1,05%
2	-0,03	0,47%
3	-0,10	1,72%
4	-0,02	0,34%
5	0,04	0,77%
6	0,01	0,19%
7	-0,14	2,43%
8	0,15	2,88%
9	0,12	2,25%
10	-0,02	0,44%
11	-0,03	0,52%
12		
13	-0,15	2,90%
14	0,20	3,63%
15	0,26	5,29%
16	0,07	1,69%
17	-0,18	3,44%
18	-0,14	2,79%
19	0,01	0,21%
20	0,36	6,08%
21		
22	0,00	0,08%
23		

3.6. Querempfindlichkeit

Die Querempfindlichkeit der Benzolmessung wurde gemäß der DIN EN 14662-3 geprüft. Ausgehend vom Angebot PG6 am Grenzwert wurden die Störkomponenten jeweils in den Angeboten PG7, PG10 und PG11 dosiert. Das Leistungskriterium wurde jeweils berechnet mit

$$b_i = \frac{\left| \overline{c}_i - \overline{c}_0 \right|}{\overline{c}_0}$$

- b_i Leistungskriterium für die Komponente i
- \overline{c}_i Konzentration bei der i-ten Störkomponente
- \overline{c}_0 Höchste Benzol-Ausgangskonzentration (Messwert ohne Störkomponenten bei der höchsten getesteten Konzentration)

Folgende Leistungskriterien sind einzuhalten. Die absoluten Beträge der zulässigen Querempfindlichkeiten sind auf die Konzentration des Prüfgases PG6 zu beziehen.

Tabelle 26: Zulässige Querempfindlichkeiten

Leistungskenngröße	Kriterium
180 μg/m³ Ozon	< 5 %
Organische Störkomponenten	< 5 %
Wasserdampf	< 4 %

Tabelle 27: Teilnehmermesswerte beim Test auf Querempfindlichkeiten

		Störkomponenten					
		Ozon	org. Komp.	H ₂ O			
TN	Kriterien der DIN EN 14662 [µg/m³]	0,28 μg/m³	0,28 μg/m³	0,22 μg/m³			
	PG6	PG 7	PG10	PG11			
	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]			
1	5,31	5,31	5,31	5,23			
2	5,80	5,89	5,81	5,72			
3	5,78	5,68	5,87	5,67			
4	5,53	5,49	5,49	5,53			
5	5,53	5,36	5,31	5,28			
6	5,72	5,59	5,66	6,11			
7	5,72	5,63					
8	5,47	5,41	5,28	4,87			
9	5,45	5,38	4,01	3,70			
10	5,49	5,42	3,10	5,30			
11	5,64						
12							
13	5,03	4,97	5,10	5,06			
14	5,64	5,55	5,56	5,51			
15	5,18	5,07	5,16	5,45			
16	4,24	4,11	3,88	3,84			
17	4,93	4,84	4,27	4,86			
18	4,79		4,96	4,84			
19	5,95		5,90	5,70			
20	6,28		5,98				
21			5,46	5,26			
22	5,38	5,46	5,34	5,35			
23			5,26	5,17			

Analog wurde ergänzend die Querempfindlichkeit weiterer Prüfgasbestandteile unter 4.2 berechnet (informativ).

3.6.1. Ozon

Tabelle 28: Querempfindlichkeit der Benzolmessverfahren gegenüber Ozon

	1			vonamon gogona
TN	ohne Ozon	mit Ozon	Querempfindlich-	Kriterien der
			keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	5.31	5.31	0.00	ia
2	5,80	5,89	0,09	ia
3	5.78	5.68	-0.10	ia
4	5,53	5,49	-0,04	ia
5	5,53	5,36	-0,17	ia
6	5,72	5,59	-0,13	ia
7	5,72	5,63	-0,09	ia
8	5,47	5,41	-0,06	ia
9	5,45	5,38	-0,07	ia
10	5,49	5,42	-0,07	ia
11	5,64			
12				
13	5,03	4,97	-0,06	ia
14	5,64	5,55	-0,09	ia
15	5,18	5,07	-0,11	ia
16	4,24	4,11	-0,13	ia
17	4,93	4,84	-0,09	ia
18	4,79			
19	5,95			
20	6,28			
21				
22	5,38	5,46	0.08	ia
23				

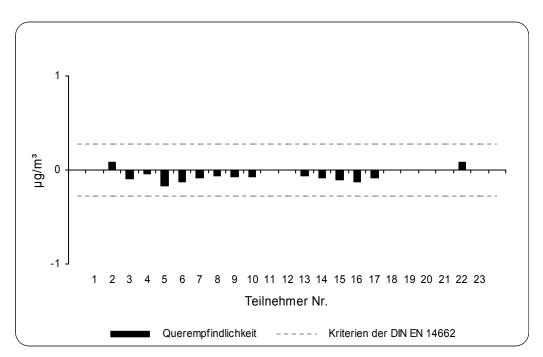


Abbildung 38: Vergleich der Querempfindlichkeiten der Benzolmessverfahren gegenüber Ozon

3.6.2. Organische Störkomponenten

Tabelle 29: Querempfindlichkeit der Benzolmessverfahren gegenüber organischen

Störkomponenten

	Storkor	mponenten		
TN	ohne org.	mit org.	Querempfindlich-	Kriterien der
111	Komp.	Komp.	keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	5,31	5,31	0,00	ja
2	5,80	5,81	0,01	ja
3	5,78	5,87	0,09	ja
4	5,53	5,49	-0,04	ja
5	5,53	5,31	-0,22	ja
6	5,72	5,66	-0,06	ja
7	5,72			
8	5,47	5,28	-0,19	ja
9	5,45	4,01	-1,44	nein
10	5,49	3,10	-2,39	nein
11	5,64			
12				
13	5,03	5,10	0,07	ja
14	5,64	5,56	-0,08	ja
15	5,18	5,16	-0,02	ja
16	4,24	3,88	-0,36	nein
17	4,93	4,27	-0,66	nein
18	4,79	4,96	0,17	ja
19	5,95	5,90	-0,05	ja
20	6,28	5,98	-0,30	nein
21		5,46		
22	5,38	5,34	-0,04	ja
23		5,26		

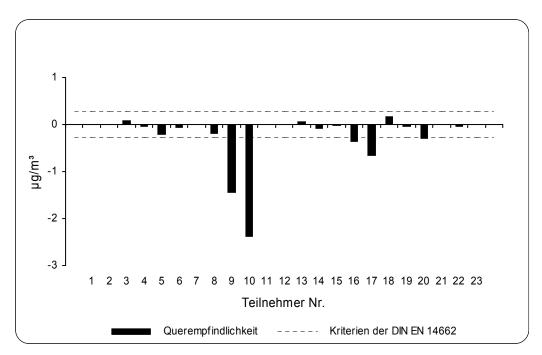


Abbildung 39: Vergleich der Querempfindlichkeiten der Benzolmessverfahren gegenüber organischen Störkomponenten

3.6.3. Wasserdampf

Aus technischen Gründen wurde bei der Dosierung der Komponente Wasserdampf das Gasvolumen nicht kompensiert. Daher ist die zu berücksichtigende Benzolausgangskonzentration geringfügig¹ geringer. Dies wird bei der Berechnung der Querempfindlichkeit berücksichtigt durch

$$b_i = \frac{\left| \overline{c}_i - \overline{c}_0 \cdot \frac{c_{DOS,Ist}}{c_{DOS,Soll}} \right|}{\overline{c}_0}$$

mit

c_{DOS, Ist} Dosierte Ausgangskonzentration = 5,4 μg/m³

c_{DOS, Soll} Ursprüngliche Ausgangskonzentration = 5,5 μg/m³

Tabelle 30: Querempfindlichkeit der Benzolmessverfahren gegenüber Wasserdampf

Tabelle	Ju. Queren	ipililaliclike	it dei Delizoilliess	verlanren gegenuber w
TN	ohne H₂O	mit H ₂ O	Querempfindlich- keiten	Kriterien der DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	5,31	5,23	0,02	ja
2	5,80	5,72	0,03	ja
3	5,78	5,67	0,00	ja
4	5,53	5,53	0,10	ja
5	5,53	5,28	-0,15	ja
6	5,72	6,11	0,49	nein
7	5,72			
8	5,47	4,87	-0,50	nein
9	5,45	3,70	-1,65	nein
10	5,49	5,30	-0,09	ja
11	5,64			
12				
13	5,03	5,06	0,12	ja
14	5,64	5,51	-0,03	ja
15	5,18	5,45	0,36	nein
16	4,24	3,84	-0,32	nein
17	4,93	4,86	0,02	ja
18	4,79	4,84	0,14	ja
19	5,95	5,70	-0,14	ja
20	6,28			
21		5,26		
22	5,38	5,35	0,07	ja
23		5,17		

 $^{^{\}rm l}$ Eine Vernachlässigung der Korrektur führt im Prinzip zu ähnlichen Ergebnisse.

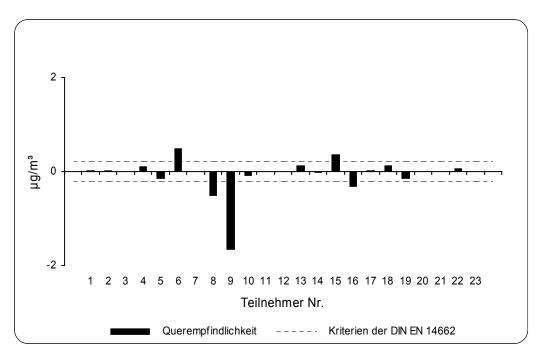


Abbildung 40: Vergleich der Querempfindlichkeiten der Benzolmessverfahren gegenüber Wasserdampf

3.7. Verschleppung – Memoryeffekt

Geprüft wurde der Effekt der Probenverschleppung im Messsystem durch Dosierung des Prüfgasangebotes 8 in Höhe von etwa 20 µg/m³ Benzol. Anschließend wurde das Nullgas Angebot 9 dosiert. Gegenüber dem Nullgas deutlich erhöhte Konzentrationen weisen auf einen Verschleppungseffekt hin.

Die zweite Nullgasanalyse darf $0.5~\mu g/m^3$ Benzol (10~% des Grenzwertes) nicht übersteigen. Der erste Messwert sollte kleiner als 20~% des Grenzwertes ($1~\mu g/m^3$) sein. Wie die anschließende Tabelle zeigt, halten drei Teilnehmer die Kriterien der DIN EN 14662 nicht ein. Bei einem weiteren Teilnehmer gibt es deutliche Hinweise auf mögliche Verschleppungseffekte.

Tabelle 31: Ermittlung des Memoryeffektes für die Komponente Benzol

Messwerte [µg/m³]								
Teilnehmer	1	2	3	4	Memoryeffekt			
TN 1	0,37	0,00	0,00	0,00				
TN 2	0,49	0,00	0,00	0,00				
TN 3	1,29	0,41	0,16	0,11				
TN 4	0,11	0,05	0,04	0,00				
TN 5	0,06	0,00	0,00	0,00				
TN 6	0,00	0,00	0,00	0,00				
TN 7	0,04	0,04	0,03	0,00				
TN 8	2,67	0,56	0,06	-0,15	Ja			
TN 9	1,13	0,61	0,48	0,42	Ja			
TN 10	0,08	0,03	0,03	0,02				
TN 11								
TN 12								
TN 13	0,83	0,32	0,25	0,00				
TN 14	0,63	0,52	0,39	0,20	Ja			
TN 15	0,03	0,03	0,03	0,03				
TN 16	0,91	0,32	0,13	0,00				
TN 17	0,44	0,00	0,00	0,00				
TN 18								
TN 19								
TN 20								
TN 21								
TN 22	0,04	0,05	0,00	0,14				
TN 23								

Memoryeffekt Benzol

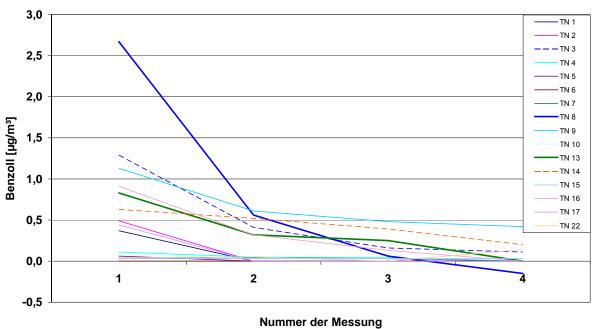


Abbildung 41: Vergleichende Übersicht über den Memoryeffekt für die Komponente Benzol Ergänzend wurde der Memoryeffekt für weiter Prüfgaskomponenten unter 4.3 betrachtet (informativ).

4. Anhang

4.1. Wiederholpräzision weiterer Prüfgaskomponenten

4.1.1. Toluol

Tabelle 32: Ermittlung der Wiederholstandardabweichung für die Komponente Toluol bei einer Spankonzentration

	i												i		i
Т		-	i i	М	esswe	rte [µg/n	n³]	i i		-	\overline{c}	n	S_{w}	S_{w}	r _i
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[%]
1	10,43	10,37	10,36	10,40	10,23	10,43	10,40	10,43	10,44	10,26	10,38	10	0,07	0,71	1,61
2	9,91	9,99	9,89	9,92	10,10	10,02	9,92	9,95	9,82	10,00	9,95	10	0,08	0,79	1,78
3	11,42	11,30	11,33	11,39	11,36	11,27	11,41	11,17	11,32	11,28	11,33	10	0,08	0,67	1,51
4	10,29	10,24	10,24	10,10	10,12	10,29	10,16	10,13	10,12	10,39	10,21	10	0,10	0,95	2,14
5	11,12	11,14	11,12	11,22	11,21	11,08	10,94	10,95	11,19	11,21	11,12	10	0,10	0,92	2,08
6	10,44	10,51	10,53	10,57	10,54	10,59	10,61	10,56	10,55	10,56	10,55	10	0,05	0,44	1,00
7					11,20	10,90	11,10	11,20	11,40	10,90	11,12	6	0,19	1,75	4,49
8	10,57	10,55	10,63	10,59	10,57	10,65	10,61	10,68	10,68	10,65	10,62	10	0,05	0,44	1,00
9	10,55	10,59	10,55	10,55	10,55	10,52	10,59	10,52	10,48	10,52	10,54	10	0,03	0,32	0,72
10	10,23	10,24	10,20	10,17	10,09	10,25	10,24	10,13	10,22	10,26	10,20	10	0,06	0,55	1,25
11	10,63	10,48	10,48	10,46	10,60	10,63	10,61	10,72	10,68	10,66	10,60	10	0,09	0,86	1,94
12												0			
13	9,83	10,20	10,18	10,21	10,10	9,98	10,22	10,16	10,18	11,90	10,30	10	0,58	5,60	12,68
14	10,82	10,99	10,90	10,78	10,85	10,75	10,56	10,58	10,75	10,68	10,77	10	0,13	1,25	2,83
15	8,41	8,45	8,25	8,21	8,05	8,09	8,01	8,09	8,13	8,01	8,17	10	0,16	1,93	4,37
16	9,19	9,42	9,92	9,88	9,54	9,50	9,50	10,46	9,88	10,27	9,76	10	0,40	4,08	9,24
17	9,86	9,73	9,92	9,62	9,80	10,08	9,85	9,72	10,35	9,52	9,85	10	0,24	2,40	5,43
18	8,94	8,96	9,05	9,01							8,99	4	0,05	0,55	1,76
19	12,00	11,90	11,90	11,50	11,10	11,00	11,40	11,10			11,49	8	0,41	3,53	8,34
20	10,24										10,24	1	0,00	0,00	
21	9,86	9,68	10,18	9,44							9,79	4	0,31	3,18	10,13
22	10,07	10,37	9,81	9,90	10,02	10,06	10,12				10,05	7	0,18	1,77	4,32

Tabelle 33: Ermittlung der Wiederholstandardabweichung für die Komponente Toluol bei einer Konzentration von ca. 1 µg/m³

	Konzentration von ca. 1 µg/m														
Т		ī	ı	Me	esswe	rte [µo	g/m³]	ī	1 1	ī	\overline{c} i	n	S_{w}	S_{w}	r_{i}
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[µg/m³]
1	1,10	1,12	1,15	1,18	1,18	1,16	1,06	1,14	1,07	1,15	1,13	10	0,04	3,76	0,10
2	1,08	1,03	1,04	1,00	1,05	1,05	1,04	1,03	1,03	0,99	1,03	10	0,03	2,46	0,06
3	1,89	1,73	1,71	1,64	1,74	1,62	1,59	1,54	1,54	1,59	1,66	10	0,11	6,58	0,25
4	1,03	0,99	0,98	0,99	1,00	1,08	1,03	1,03	0,98	1,02	1,01	10	0,03	3,09	0,07
5	1,15	1,15	1,14	1,12	1,09	1,08	1,11	1,12	1,09	1,14	1,12	10	0,03	2,32	0,06
6	1,21	1,18	1,15	1,13	1,15	1,12	1,10	1,12	1,09	1,11	1,14	10	0,04	3,27	0,08
7	1,20	1,00	1,00	1,20	1,00	0,90	1,10	1,30	1,25	1,25	1,12	10	0,14	12,31	0,31
8	1,45	1,41	1,40	1,39	1,39	1,36	1,35	1,33	1,31	1,31	1,37	10	0,05	3,35	0,10
9	1,21	1,21	1,21	1,21	1,17	1,21	1,21	1,17	1,17	1,17	1,19	10	0,02	1,73	0,05
10	1,03	1,02	0,98	0,98	0,97	0,98	0,97	0,95	0,97	1,00	0,99	10	0,02	2,50	0,06
11	1,81	1,78	1,79	1,71	1,71	1,68	1,68	1,64	1,64	1,62	1,71	10	0,07	3,95	0,15
12												0			
13	1,51	1,49	1,42	1,40	1,40	1,39	1,37	1,36	1,35	1,30	1,40	10	0,06	4,50	0,14
14												0			
15	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	10	0,00	0,00	0,00
16	2,64	1,95	1,65	1,65	1,46	1,65	1,53	1,57	1,46	1,38	1,69	10	0,37	21,70	0,83
17	1,66	1,69	1,45	1,35	1,36	1,25	1,37	1,41	1,28	1,12	1,39	10	0,17	12,52	0,39
18												0			
19												0			
20												0			
21												0			
22	1,00	1,00	0,98	0,98	1,03	0,99					1,00	6	0,02	1,87	0,05

4.1.2. Ethylbenzol

Tabelle 34: Ermittlung der Wiederholstandardabweichung für die Komponente Ethylbenzol bei einer Spankonzentration

Т	Messwerte [μ g/m³] \overline{c} n S_w S_w r_i														r.
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³		[µg/m³]	[%]	[%]
1	4,08	4,04	4,03	4,28	4,01	4,06	4,21	4,02	4,08	4,07	4,09	10	0,09	2,15	4,86
2	4,35	4,39	4,36	4,32	4,34	4,28	4,40	4,43	4,26	4,12	4,33	10	0,09	2,06	4,65
3	5,16	5,01	5,21	5,16	5,08	5,24	5,12	5,22	5,11	5,15	5,15	10	0,07	1,35	3,06
4	0,10	0,01	0,21	0,10	0,00	0,21	0,12	0,22	0,11	0,10	0,10	0	0,01	1,00	0,00
5												0			
6	4,18	4,23	4,24	4,25	4,26	4,30	4,32	4,26	4,26	4,29	4,26	10	0,04	0,92	2,09
7	.,	.,_0	.,	,,_0	,,_0	.,00	.,	.,_0	.,_0	.,_0	.,_0	0	0,0 .	0,02	_,00
8	4,35	4,35	4,35	4,37	4,37	4,34	4,34	4,32	4,30	4,32	4,34	10	0,02	0,51	1,16
9	3,23	3,23	3,18	3,23	3,18		3,18	3,18	3,13	3,13	3,19	10	0,04	1,16	2,62
10	, ,	,	', '	', '		,	, .	,	,	,	,	0	- , -	, -	, -
11	3,88	3,97	4,08	4,10	4,17	4,14	4,20	4,18	4,20	4,20	4,11	10	0,11	2,65	6,00
12	,	,				,	,	,	,	,	,	0	,	,	,
13	4,37	4,74	4,49	4,49	4,49	4,46	4,46	4,29	4,45	4,39	4,46	10	0,12	2,62	5,93
14	3,88	3,97	4,08	4,10	4,17	4,14	4,20	4,18	4,20	4,20	4,11	10	0,11	2,65	6,00
15	2,62	2,57	2,57	2,57	2,52		2,52	2,52	2,48	2,52	2,54	9	0,04	1,66	3,82
16	4,19	3,88	3,93	3,80	3,97	3,80	3,84	3,80	3,97	3,93	3,91	10	0,12	3,06	6,91
17	4,40	4,36	4,29	4,32	4,35	4,33	4,28	4,33	4,28	4,32	4,33	10	0,04	0,87	1,98
18	3,72	3,78	3,77	3,76							3,76	4	0,03	0,70	2,23
19	5,50	5,30	5,20	5,20	5,10	4,70	5,10	4,80			5,11	8	0,26	5,06	11,97
20	3,57										3,57	1			
21	4,19	4,11	4,16	4,11							4,14	4	0,04	0,95	3,03
22	4,00	4,20	3,98	4,02	3,99	3,99	4,04				4,03	7	0,08	1,91	4,68

Tabelle 35: Ermittlung der Wiederholstandardabweichung für die Komponente Ethylbenzol bei einer Konzentration von ca. 0,5 μg/m³

emer Konzentration von ca. 0,5 µg/m															
Т		ī	ı i	Ме	sswe	rte [µg/	/m³]	ī	ī	ī	\overline{c}	n	S_{w}	S_w	\mathbf{r}_{i}
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[µg/m³]
1	0,38	0,53	0,25	0,28	0,24	0,26		0,20	0,20	0,26	0,29	9	0,10	36,28	0,24
2	0,43	0,00	0,00	0,00	0,00	0,41	0,00	0,36	0,00	0,00	0,12	10	0,19	161,64	0,44
3	0,68	0,59	0,53	0,59	0,48	0,48	0,50	0,55	0,52	0,45	0,54	10	0,07	12,72	0,15
4												0			
5												0			
6	0,51	0,51	0,50	0,47	0,47	0,47	0,48	0,48	0,46	0,47	0,48	10	0,02	3,76	0,04
7												0			
8	0,33	0,30	0,29	0,29	0,28	0,27	0,27	0,28	0,28	0,26	0,29	10	0,02	6,87	0,04
9	0,38	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,34	10	0,02	4,72	0,04
10												0			
11	0,28	0,25	0,27	0,25	0,28	0,25	0,27	0,25	0,23	0,27	0,26	10	0,02	6,28	0,04
12												0			
13	0,70	0,64	0,55	0,60	0,61	0,58	0,58	0,53	0,52	0,50	0,58	10	0,06	10,37	0,14
14												0			
15	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	10	0,00	0,00	0,00
16	0,97	0,57	0,53	0,44	0,57	0,44	0,49	0,35	0,44	0,31	0,51	10	0,18	35,72	0,41
17	0,54	0,51	0,52	0,53	0,53	0,48	0,50	0,49	0,52	0,35	0,50	10	0,05	11,06	0,12
18												0			
19												0			
20												0			
21												0			
22	0,38	0,37	0,36	0,35	0,37	0,35					0,36	6	0,01	3,33	0,03

4.1.3. m-/p-Xylol

Tabelle 36: Ermittlung der Wiederholstandardabweichung für die Komponente m-/p-Xylol bei einer Spankonzentration

	einer Spankonzentration														
T		ı		M	lessw	erte [µ	ıg/m³]			ı	\overline{c}	n	S_w	S_{w}	\mathbf{r}_{i}
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[%]
1	5,12	5,04	5,03	5,38	4,99	5,06	5,45	5,04	5,09	5,04	5,12	10	0,16	3,09	6,98
2	4,61	4,75	4,49	4,68	4,65	4,53	4,90	4,70	4,49	4,25	4,61	10	0,18	3,85	8,71
3	5,63	5,44	5,42	5,42	5,43	5,66	5,46	5,44	5,66	5,53	5,51	10	0,10	1,86	4,21
4	5,24	5,00	5,11	5,44	5,10	5,24	5,08	5,28	5,10	4,96	5,16	10	0,14	2,80	6,33
5	5,80	5,77	5,73	5,73	5,72	5,67	5,83	5,74	5,83	5,76	5,76	10	0,05	0,88	2,00
6	5,15	5,21	5,22	5,21	5,24	5,29	5,34	5,27	5,25	5,25	5,24	10	0,05	0,98	2,22
7					4,60	4,70	4,69	4,82	5,20	4,80	4,80	6	0,21	4,39	11,29
8	5,06	5,07	5,07	5,08	5,09	5,16	5,06	5,02	5,02	5,02	5,07	10	0,04	0,83	1,89
9	5,83	5,83	5,83	5,83	5,78	5,74	5,74	5,74	5,69	5,69	5,77	10	0,06	1,00	2,26
10	4,89	4,85	4,97	4,96	4,95	4,92	4,98	5,00	5,08	5,02	4,96	10	0,07	1,32	2,99
11	5,14	5,11	5,10	5,10	5,08	5,07	5,04	5,03	5,10	5,02	5,08	10	0,04	0,76	1,72
12												0			
13	5,76	6,09	5,95	6,35	6,33	5,86	6,25	5,36	6,20	5,58	5,97	10	0,33	5,58	12,63
14	5,36	5,38	5,31	5,48	5,38	4,91	5,31	5,34	5,69	5,44	5,36	10	0,19	3,62	8,18
15	3,53	3,53	3,53	3,53	3,44		3,48	3,44	3,44	3,44	3,48	9	0,05	1,29	2,98
16	6,16	4,90	4,24	4,81	4,77	4,46	4,77	4,72	4,72	4,55	4,81	10	0,51	10,66	24,11
17	5,34	5,32	5,52	5,26	5,51	5,45	5,26	5,24	5,17	5,16	5,32	10	0,13	2,47	5,58
18	4,51	4,59	4,60	4,57							4,57	4	0,04	0,88	2,81
19	6,40	6,40	6,30	5,90	6,20	5,90	6,20	5,90			6,15	8	0,22	3,58	8,47
20	4,44										4,44	1			
21	5,15	5,16	5,27	5,22							5,20	4	0,06	1,08	3,43
22	4,86	5,14	4,84	4,91	4,85	4,85	4,90				4,91	7	0,11	2,16	5,29

Tabelle 37: Ermittlung der Wiederholstandardabweichung für die Komponente m-/p-Xylol bei einer Konzentration von ca. 0,5 µg/m³

	einer Konzentration von ca. 0,5 µg/m³														
T		ı		. N	lessw	erte [µg/m³]				\overline{c}	n	S_{w}	S_{w}	r _i
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]			[%]	[µg/m³]
1	0,24	0,65	0,29	0,21	0,24	0,66	0,23	0,23	0,24	0,28	0,33	10	0,17	53,36	0,39
2	0,00	0,39	0,00	0,00	0,00	0,43	0,00	0,00	0,00	0,40	0,12	10	0,20	161,22	0,44
3	0,81	0,63	0,65	0,62	0,61	0,59	0,63	0,61	0,62	0,59	0,64	10	0,06	10,03	0,14
4	0,67	0,57	0,65	0,52	0,57	0,45	0,53	0,58	0,48	0,44	0,55	10	0,08	14,22	0,18
5	0,59	0,61	0,63	0,61	0,50	0,64	0,64	0,61	0,66	0,64	0,61	10	0,04	7,30	0,10
6	0,64	0,65	0,67	0,64	0,63	0,60	0,66	0,61	0,60	0,66	0,64	10	0,03	4,01	0,06
7	0,47	0,46	0,51	0,53	0,50	0,50	0,44	0,52	0,52	0,53	0,50	10	0,03	6,26	0,07
8	0,39	0,38	0,39	0,34	0,37	0,36	0,34	0,34	0,33	0,34	0,36	10	0,02	6,42	0,05
9	1,38	1,33	1,33	1,33	1,28	1,33	1,28	1,28	1,24	1,28	1,31	10	0,04	3,11	0,09
10	0,51	0,54	0,49	0,48	0,43	0,48	0,49	0,48	0,49	0,47	0,49	10	0,03	5,75	0,06
11	0,53	0,50	0,51	0,46	0,45	0,45	0,47	0,44	0,42	0,43	0,47	10	0,04	7,78	0,08
12												0			
13	0,93	0,83	0,78	0,76	0,73	0,79	0,70	0,74	0,71	0,70	0,77	10	0,07	9,28	0,16
14												0			
15	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	10	0,00	0,00	0,00
16	1,32	0,84	0,71	0,71	0,62	0,71	0,62	0,53	0,57	0,53	0,72	10	0,23	32,56	0,53
17	0,89	0,92	0,89	0,84	0,77	0,81	0,95	0,78	0,76	0,70	0,83	10	0,08	9,67	0,18
18												0			
19												0			
20												0			
21												0			
22	0,47	0,47	0,43	0,42	0,45	0,43					0,45	6	0,02	4,87	0,06

4.1.4. o-Xylol

Tabelle 38: Ermittlung der Wiederholstandardabweichung für die Komponente o-Xylol bei einer Spankonzentration

_	I	Op	u				_	l	ا م ا	•					
Т				IV I	lesswe	rte [µg/	m³]	I 1	1 1		\overline{c}	n	S_w	S_w	r _i
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[%]
1	4,01	4,18	4,24	4,35	4,34	4,38	4,50	4,40	4,43	4,40	4,32	10	0,14	3,31	7,49
2	4,60	4,60	4,65	4,63	4,64	4,57	4,63	4,65	4,58	4,50	4,61	10	0,05	1,01	2,28
3	5,28	5,22	5,33	5,25	5,17	5,25	5,44	5,25	5,36	5,28	5,28	10	0,08	1,45	3,28
4	5,54	5,02	5,52	4,80	4,73	5,10	4,89	4,79	5,68	4,85	5,09	10	0,36	6,99	15,82
5												0			
6	4,96	5,09	5,13	5,03	5,04	5,05	5,05	5,06	5,05	5,09	5,05	10	0,04	0,89	2,00
7												0			
8	4,90	4,92	4,90	4,99	4,95	4,95	4,87	4,85	4,89	4,88	4,91	10	0,04	0,87	1,97
9	3,18	3,18	3,18	3,18	3,14	3,14	3,14	3,14	3,10	3,10	3,15	10	0,03	1,00	2,27
10	4,91	4,92	4,92	4,91	4,86	5,08	4,88	4,88	4,86	4,91	4,91	10	0,06	1,28	2,90
11												0			
12												0			
13	5,38	5,21	5,76	5,71	5,73	5,33	5,49	5,61	5,71	5,73	5,57	10	0,20	3,58	8,10
14	5,46	5,18	5,27	5,57	5,31	5,19	5,65	5,28	4,97	5,22	5,31	10	0,20	3,78	8,56
15	3,01	3,01	3,19	3,19	3,10	3,15	3,01	2,97	2,97	3,01	3,06	10	0,09	2,87	6,50
16	4,15	4,38	4,06	4,33	4,19	4,02	4,50	4,33	4,24	4,33	4,25	10	0,15	3,52	7,95
17	5,76	5,51	5,14	5,47	5,58	5,28	5,51	5,67	5,49	5,54	5,50	10	0,18	3,23	7,31
18	4,41	4,27	4,44	4,40							4,38	4	0,08	1,72	5,47
19	6,10	5,90	6,10	5,70	5,50	5,50	5,60	5,40			5,73	8	0,28	4,83	11,42
20	3,72										3,72	1			
21	5,23	5,16	5,41	5,38							5,30	4	0,12	2,26	7,19
22	4,80	5,06	4,77	4,86	4,79	4,78	4,84				4,84	7	0,10	2,09	5,11

Tabelle 39: Ermittlung der Wiederholstandardabweichung für die Komponente m-/p-Xylol bei einer Konzentration von ca. 0,5 µg/m³

	emer Konzentration von ca. 0,5 µg/m²														
T		1 1	ì	M	lesswe	rte [µg	/m³]	ì	ī	Ī	\overline{c}	n	S_{w}	S_{w}	\mathbf{r}_{i}
Nr.	1	2	3	4	5	6	7	8	9	10	[µg/m³]		[µg/m³]	[%]	[µg/m³]
1			0,09	0,10							0,10	2	0,01	7,44	0,09
2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	10	0,00	0,00	0,00
3	0,66	0,59	0,60	0,62	0,65	0,65	0,74	0,56	0,64	0,68	0,64	10	0,05	7,93	0,11
4	0,49	0,44	0,42	0,47	0,53	0,52	0,48	0,51	0,53	0,55	0,49	10	0,04	8,49	0,09
5												0			
6	0,62	0,63	0,59	0,58	0,55	0,58	0,55	0,59	0,61	0,58	0,59	10	0,03	4,52	0,06
7												0			
8	0,39	0,30	0,30	0,26	0,22	0,21	0,20	0,19	0,21	0,19	0,25	10	0,07	26,45	0,15
9	0,23	0,27	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	10	0,01	5,41	0,03
10	0,46	0,43	0,46	0,46	0,45	0,49	0,48	0,48	0,44	0,46	0,46	10	0,02	4,02	0,04
11												0			
12												0			
13	0,83	0,76	0,68	0,69	0,90	0,70	0,66	0,62	0,65	0,63	0,71	10	0,09	12,82	0,21
14												0			
15	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	10	0,00	0,00	0,00
16	1,24	0,71	0,66	0,66	0,49	0,44	0,26	0,04	0,40	0,26	0,52	10	0,33	63,98	0,75
17	0,72	0,66	0,91	1,17	0,65	0,88	0,74	0,64	0,67	0,45	0,75	10	0,20	26,20	0,44
18												0			
19												0			
20												0			
21												0			
22	0,45	0,46	0,43	0,42	0,44	0,43					0,44	6	0,01	3,36	0,04

4.2. Querempfindlichkeit zusätzlicher Komponenten

4.2.1. Toluol

Tabelle 40: Teilnehmermesswerte beim Test auf Querempfindlichkeiten für die Komponente Toluol

		St	örkomponente	en
TN		Ozon	org. Komp.	H₂O
	Kriterien in Anlehnung an DIN EN 14662 [µg/m³]	0,52 μg/m³	0,52 μg/m³	0,42 μg/m³
	PG6	PG 7	PG10	PG11
	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	10,25	10,11	10,50	10,10
2	9,89	9,76	9,99	9,64
3	10,89	10,51	10,74	10,48
4	10,17	10,10	10,29	11,30
5	11,10	10,13	11,19	11,00
6	10,63	10,45	10,70	10,44
7	10,93	10,90		
8	10,75	10,29	10,19	9,86
9	10,36	10,00	10,16	9,05
10	10,21	10,40	10,30	10,82
11	11,49			
12				
13	9,83	9,32	9,44	9,33
14	10,98	10,26	10,78	10,49
15	8,86	8,39	8,87	9,39
16	9,52	8,63	9,63	9,05
17	9,53	8,74	9,25	9,11
18	8,85		9,19	8,96
19	11,40		11,20	10,80
20	9,85		10,61	
21			9,59	8,99
22	9,99	9,85	9,62	9,91
23			9,50	9,30

4.2.1.1 Ozon

Tabelle 41: Querempfindlichkeit der Toluolmessverfahren gegenüber Ozon

- 4.00		· p·····a···o·····	. 40 6.40	verramen gegenabe
TN	ohne Ozon	mit Ozon	Querempfindlich-	Kriterien der
'''	00 020	02011	keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	10.25	10.11	-0.04	ia
2	9,89	9,76	-0,03	ia
3	10.89	10,51	-0,28	ia
4	10,17	10,10	0.03	ia
5	11,10	10,13	-0,86	nein
6	10,63	10,45	-0,08	ia
7	10.93	10,90	0.08	ia
8	10.75	10,29	-0,36	ia
9	10.36	10,00	-0,26	ia
10	10,21	10,40	0,29	ia
11	11,49			
12				
13	9.83	9,32	-0,42	ia
14	10.98	10,26	-0,61	nein
15	8.86	8,39	-0,38	ia
16	9,52	8,63	-0,80	nein
17	9.53	8,74	-0,70	nein
18	8,85			
19	11,40			
20	9,85			
21				
22	9,99	9,85	-0,04	ja
23				

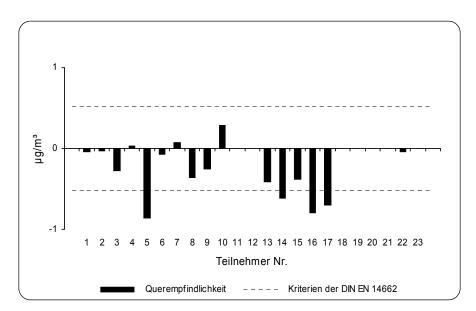


Abbildung 42: Vergleich der Querempfindlichkeiten der Toluolmessverfahren gegenüber Ozon

4.2.1.2 Organische Störkomponenten

Tabelle 42: Querempfindlichkeit der Toluolmessverfahren gegenüber organischen Störkomponenten

Storkomponenten												
TN	ohne org.	mit org.	Querempfindlich-	Kriterien der								
IIN	Komp.	Komp.	keiten	DIN EN 14662								
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt								
1	10,25	10,50	0,25	ja								
2	9,89	9,99	0,10	ja								
3	10,89	10,74	-0,15	ja								
4	10,17	10,29	0,12	ja								
5	11,10	11,19	0,09	ja								
6	10,63	10,70	0,07	ja								
7	10,93											
8	10,75	10,19	-0,56	nein								
9	10,36	10,16	-0,20	ja								
10	10,21	10,30	0,09	ja								
11	11,49											
12												
13	9,83	9,44	-0,39	ja								
14	10,98	10,78	-0,20	ja								
15	8,86	8,87	0,01	ja								
16	9,52	9,63	0,11	ja								
17	9,53	9,25	-0,28	ja								
18	8,85	9,19	0,34	ja								
19	11,40	11,20	-0,20	ja								
20	9,85	10,61	0,76	nein								
21		9,59										
22	9,99	9,62	-0,37	ja								
23		9,50										

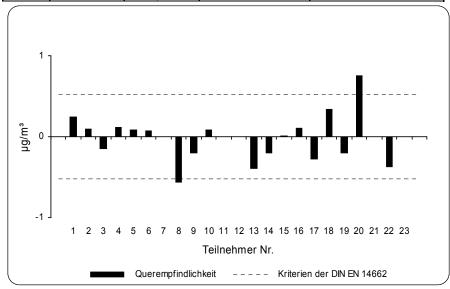


Abbildung 43: Vergleich der Querempfindlichkeiten der Toluolmessverfahren gegenüber organischen Störkomponenten

4.2.1.3 Wasserdampf

Tabelle 43: Querempfindlichkeit der Toluolmessverfahren gegenüber Wasserdampf

TN	ohne H ₂ O	mit H ₂ O	Querempfindlich- keiten	Kriterien der DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	10,25	10,10	0,15	ja
2	9,89	9,64	0,04	ja
3	10,89	10,48	-0,10	ja
4	10,17	11,30	1,42	nein
5	11,10	11,00	0,22	ja
6	10,63	10,44	0,12	ja
7	10,93			
8	10,75	9,86	-0,58	nein
9	10,36	9,05	-1,01	nein
10	10,21	10,82	0,90	nein
11	11,49			
12				
13	9,83	9,33	-0,22	ja
14	10,98	10,49	-0,17	ja
15	8,86	9,39	0,79	nein
16	9,52	9,05	-0,20	ja
17	9,53	9,11	-0,15	ja
18	8,85	8,96	0,37	ja
19	11,40	10,80	-0,27	ja
20	9,85			
21		8,99		
22	9,99	9,91	0,21	ja
23		9,30		

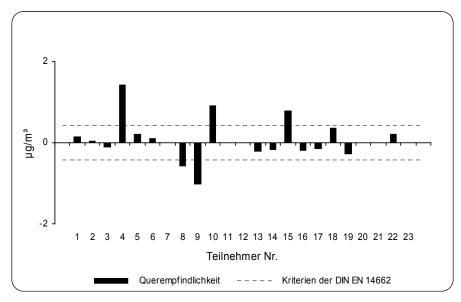


Abbildung 44: Vergleich der Querempfindlichkeiten der Toluolmessverfahren gegenüber Wasserdampf

4.2.2. m-Xylol

Tabelle 44: Teilnehmermesswerte beim Test auf Querempfindlichkeiten für die Komponente m-Xylol

	m-Xylol					
		St	örkomponent	en		
TN		Ozon	org. Komp.	H₂O		
	Kriterien in					
	Anlehnung an DIN	0,26 μg/m³	0,26 μg/m³	0,20 μg/m³		
	EN 14662 [µg/m³]					
	PG6	PG 7	PG10	PG11		
	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
1	5,03	4,90	5,06	4,64		
2	4,64	4,55	4,66	4,44		
3	5,28	5,31	5,62	5,43		
4	4,98	4,99	5,22	4,88		
5	5,59	3,10	5,57	5,44		
6	5,31	5,19	5,39	5,37		
7	4,75	4,50				
8	5,37	5,30	5,32	5,16		
9	5,77	5,43	5,69	5,45		
10	5,04	5,92	5,41	6,12		
11	4,94					
12						
13	4,74	4,66	4,59	4,30		
14	5,96	4,84	5,66	5,54		
15	4,11	3,86	3,99	4,71		
16	4,82	4,14	4,80	4,80		
17	5,09	3,77	5,10	4,86		
18	4,43		4,65	4,50		
19	6,33		6,10	5,70		
20	4,51		5,23			
21			5,27	5,00		
22	4,85	4,54	4,60	4,81		
23			5,01	4,90		

4.2.2.1 Ozon

Tabelle 45: Querempfindlichkeit der m-Xylolmessverfahren gegenüber Ozon

TN	ohne Ozon	mit Ozon	Querempfindlich-	Kriterien der
			keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	5,03	4,90	-0,03	ja
2	4,64	4,55	0,00	ja
3	5,28	5,31	0,13	ja
4	4,98	4,99	0,11	ja
5	5,59	3,10	-2,38	nein
6	5,31	5,19	-0,02	ja
7	4,75	4,50	-0,16	ja
8	5,37	5,30	0,04	ja
9	5,77	5,43	-0,23	ja
10	5,04	5,92	0,98	nein
11	4,94			
12				
13	4,74	4,66	0,01	ja
14	5,96	4,84	-1,00	nein
15	4,11	3,86	-0,17	ja
16	4,82	4,14	-0,59	nein
17	5,09	3,77	-1,22	nein
18	4,43			
19	6,33			
20	4,51			
21				
22	4,85	4,54	-0,21	ja
23				

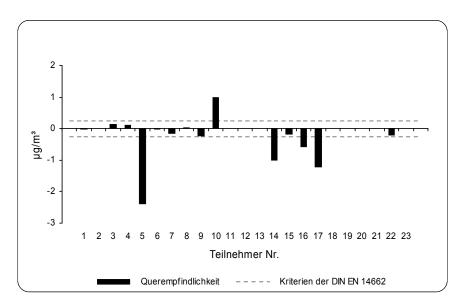


Abbildung 45: Vergleich der Querempfindlichkeiten der m-Xylolmessverfahren gegenüber Ozon

4.2.2.2 Organische Störkomponenten

Tabelle 46: Querempfindlichkeit der m-Xylolmessverfahren gegenüber organischen Störkomponenten

	<u> </u>	пропенсы		
TN	ohne org.	mit org.	Querempfindlich-	Kriterien der
111	Komp.	Komp.	keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	5,03	5,06	0,03	ja
2	4,64	4,66	0,02	ja
3	5,28	5,62	0,34	nein
4	4,98	5,22	0,24	ja
5	5,59	5,57	-0,02	ja
6	5,31	5,39	0,08	ja
7	4,75			
8	5,37	5,32	-0,05	ja
9	5,77	5,69	-0,08	ja
10	5,04	5,41	0,37	nein
11	4,94			
12				
13	4,74	4,59	-0,15	ja
14	5,96	5,66	-0,30	nein
15	4,11	3,99	-0,12	ja
16	4,82	4,80	-0,02	ja
17	5,09	5,10	0,01	ja
18	4,43	4,65	0,22	ja
19	6,33	6,10	-0,23	ja
20	4,51	5,23	0,72	nein
21		5,27		
22	4,85	4,60	-0,25	ja
23		5,01		

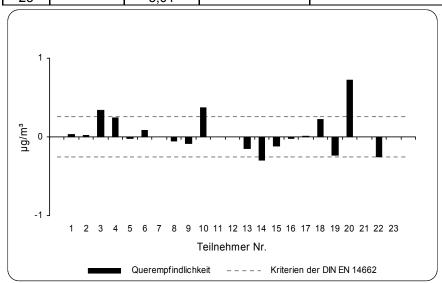


Abbildung 46: Vergleich der Querempfindlichkeiten der m-Xylolmessverfahren gegenüber organischen Störkomponenten

4.2.2.3 Wasserdampf

Tabelle 47: Querempfindlichkeit der m-Xylolmessverfahren gegenüber Wasserdampf

		•	•	
TN	ohne H ₂ O	mit H₂O	Querempfindlich-	Kriterien der
111	011116 1 120	111111120	keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	5,03	4,64	-0,29	nein
2	4,64	4,44	-0,11	ja
3	5,28	5,43	0,25	nein
4	4,98	4,88	0,00	ja
5	5,59	5,44	-0,04	ja
6	5,31	5,37	0,16	ja
7	4,75			
8	5,37	5,16	-0,10	ja
9	5,77	5,45	-0,21	nein
10	5,04	6,12	1,18	nein
11	4,94			
12				
13	4,74	4,30	-0,35	nein
14	5,96	5,54	-0,30	nein
15	4,11	4,71	0,68	nein
16	4,82	4,80	0,07	ja
17	5,09	4,86	-0,13	ja
18	4,43	4,50	0,16	ja
19	6,33	5,70	-0,51	nein
20	4,51			
21		5,00		
22	4,85	4,81	0,06	ja
23		4,90		

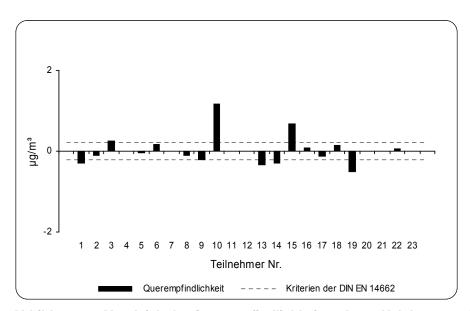


Abbildung 47: Vergleich der Querempfindlichkeiten der m-Xylolmessverfahren gegenüber Wasserdampf

4.2.3. Ethylbenzol

Tabelle 48: Teilnehmermesswerte beim Test auf Querempfindlichkeiten für die Komponente Ethylbenzol

Ethylbenzol					
		St	örkomponent	en	
TN		Ozon	org. Komp.	H₂O	
	Kriterien in				
	Anlehnung an DIN	0,21 μg/m³	0,21 μg/m³	0,17 μg/m³	
	EN 14662 [μg/m³]				
	PG6	PG7	PG10	PG11	
	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	
1	4,02	3,95	3,97	3,68	
2	4,29	4,16	4,25	4,32	
3	5,06	4,95	5,03	5,28	
4					
5					
6	4,27	4,20	4,22	4,86	
7					
8	4,52	4,45	4,31	4,43	
9	3,21	3,03	3,04	3,00	
10					
11	3,95				
12					
13	3,91	3,81	3,78	3,76	
14					
15	2,89	2,81	2,82	0,00	
16	3,78	3,41	3,58	3,91	
17	4,21	3,41	4,12	4,11	
18	3,62		3,78	3,75	
19	5,28		5,00	4,70	
20	3,59		4,17		
21			4,11	3,97	
22	4,01	3,45	3,74	3,93	
23			4,04	4,06	

4.2.3.1 Ozon

Tabelle 49: Querempfindlichkeit der Ethylbenzolmessverfahren gegenüber Ozon

TN	ohne Ozon	mit Ozon	Querempfindlich-	Kriterien der
	r / 27	r / 21	keiten	DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	4,02	3,95	-0,07	ja
2	4,29	4,16	-0,13	ja
3	5,06	4,95	-0,11	ja
4				
5				
6	4,27	4,20	-0,07	ja
7				
8	4,52	4,45	-0,07	ja
9	3,21	3,03	-0,18	ja
10				
11	3,95			
12				
13	3,91	3,81	-0,10	ja
14				
15	2,89	2,81	-0,08	ja
16	3,78	3,41	-0,37	nein
17	4,21	3,41	-0,80	nein
18	3,62			
19	5,28			
20	3,59			
21				
22	4,01	3,45	-0,56	nein
23				

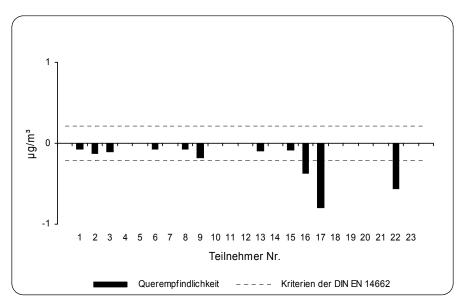


Abbildung 48: Vergleich der Querempfindlichkeiten der Ethylbenzolmessverfahren gegenüber Ozon

4.2.3.2 Organische Störkomponenten

Tabelle 50: Querempfindlichkeit der Ethylbenzolmessverfahren gegenüber organischen Störkomponenten

	Storkomponenten					
TN	ohne org. Komp.	mit org. Komp.	Querempfindlich- keiten	Kriterien der DIN EN 14662		
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt		
1	4,02	3,97	-0,05	ja		
2	4,29	4,25	-0,04	ja ja		
3	5,06	5,03	-0,03	ja ja		
4	3,00	3,03	-0,03	ja		
5						
6	4,27	4,22	-0,05	ja		
7	·	,	·	,		
8	4,52	4,31	-0,21	nein		
9	3,21	3,04	-0,17	ja		
10						
11	3,95					
12						
13	3,91	3,78	-0,13	ja		
14						
15	2,89	2,82	-0,07	ja		
16	3,78	3,58	-0,20	ja		
17	4,21	4,12	-0,09	ja		
18	3,62	3,78	0,16	ja		
19	5,28	5,00	-0,28	nein		
20	3,59	4,17	0,58	nein		
21		4,11				
22	4,01	3,74	-0,27	nein		
23		4,04				

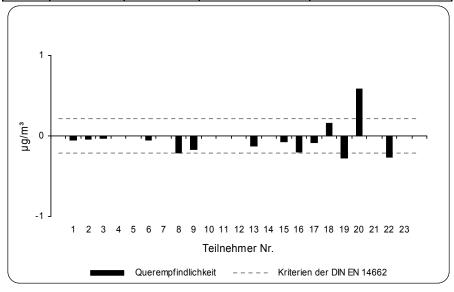


Abbildung 49: Vergleich der Querempfindlichkeiten der Ethylbenzolmessverfahren gegenüber organischen Störkomponenten

4.2.3.3 Wasserdampf

Tabelle 51: Querempfindlichkeit der Ethylbenzolmessverfahren gegenüber Wasserdampf

TN	ohne H ₂ O	mit H₂O	Querempfind- lichkeiten	Kriterien der DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	
1	4,02	3,68	-0,24	nein
2	4,29	4,32	0,13	ja
3	5,06	5,28	0,34	nein
4				
5				
6	4,27	4,86	0,69	nein
7				
8	4,52	4,43	0,02	ja
9	3,21	3,00	-0,13	ja
10				
11	3,95			
12				
13	3,91	3,76	-0,06	ja
14				
15	2,89	0,00	-2,82	nein
16	3,78	3,91	0,22	nein
17	4,21	4,11	0,00	ja
18	3,62	3,75	0,22	nein
19	5,28	4,70	-0,45	nein
20	3,59			
21		3,97		
22	4,01	3,93	0,02	ja
23		4,06		

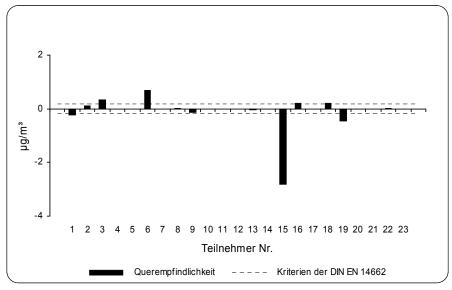


Abbildung 50: Vergleich der Querempfindlichkeiten der Ethylbenzolmessverfahren gegenüber Wasserdampf

4.2.4. o-Xylol

Tabelle 52: Teilnehmermesswerte beim Test auf Querempfindlichkeiten für die Komponente o-Xylol

	o-Xyloi			 1
		St	örkomponente	en
TN		Ozon	org. Komp.	H₂O
	Kriterien in			
	Anlehnung an DIN	0,25 μg/m³	0,25 μg/m³	0,20 μg/m³
	EN 14662 [µg/m³]			
	PG6	PG 7	PG10	PG11
	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
1	4,36	4,84	4,32	3,88
2	4,68	4,68	4,58	4,22
3	5,20	4,95	5,22	5,19
4	5,04	5,42	5,01	4,93
5				
6	5,13	4,97	5,13	5,11
7				
8	4,99	4,71	4,77	5,02
9	3,22	3,05	3,10	3,01
10	4,98	5,34	5,17	5,98
11				
12				
13	4,75	4,43	4,55	4,61
14	5,33	4,92	5,53	5,53
15	3,58	3,53	3,43	4,35
16	4,22	4,02	3,97	4,27
17	5,44	4,08	5,90	5,39
18	4,32		4,47	4,39
19	5,78		5,50	5,40
20	4,02		4,49	
21			5,32	5,21
22	4,80	4,37	4,44	4,79
23			4,55	4,48

4.2.4.1 Ozon

Tabelle 53: Querempfindlichkeit der o Xylolmessverfahren gegenüber Ozon

TN	ohne Ozon	mit Ozon	Querempfindlich -keiten	Kriterien der DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	4,36	4,84	0,57	nein
2	4,68	4,68	0,09	ja
3	5,20	4,95	-0,15	ja
4	5,04	5,42	0,48	nein
5				
6	5,13	4,97	-0,06	ja
7				
8	4,99	4,71	-0,18	ja
9	3,22	3,05	-0,11	ja
10	4,98	5,34	0,46	nein
11				
12				
13	4,75	4,43	-0,23	ja
14	5,33	4,92	-0,30	nein
15	3,58	3,53	0,02	ja
16	4,22	4,02	-0,12	ja
17	5,44	4,08	-1,25	nein
18	4,32			
19	5,78			
20	4,02			
21				
22	4,80	4,37	-0,33	nein
23				

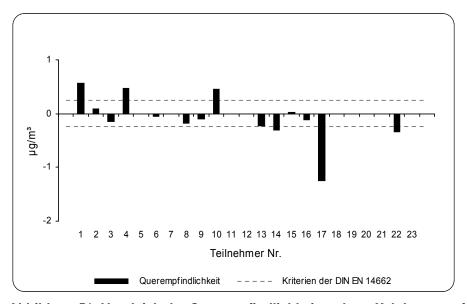


Abbildung 51: Vergleich der Querempfindlichkeiten der o-Xylolmessverfahren gegenüber Ozon

4.2.4.2 Organische Störkomponenten

Tabelle 54: Querempfindlichkeit der o-Xylolmessverfahren gegenüber organischen Störkomponenten

	Storkomponenten				
TN	ohne org.	mit org.	Querempfindlich- keiten	Kriterien der DIN EN 14662	
	Komp.	Komp.			
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt	
1	4,36	4,32	-0,04	ja	
2	4,68	4,58	-0,10	ja	
3	5,20	5,22	0,02	ja	
4	5,04	5,01	-0,03	ja	
5					
6	5,13	5,13	0,00	ja	
7					
8	4,99	4,77	-0,22	ja	
9	3,22	3,10	-0,12	ja	
10	4,98	5,17	0,19	ja	
11					
12					
13	4,75	4,55	-0,20	ja	
14	5,33	5,53	0,20	ja	
15	3,58	3,43	-0,15	ja	
16	4,22	3,97	-0,25	nein	
17	5,44	5,90	0,46	nein	
18	4,32	4,47	0,15	ja	
19	5,78	5,50	-0,28	nein	
20	4,02	4,49	0,47	nein	
21		5,32			
22	4,80	4,44	-0,36	nein	
23		4,55			

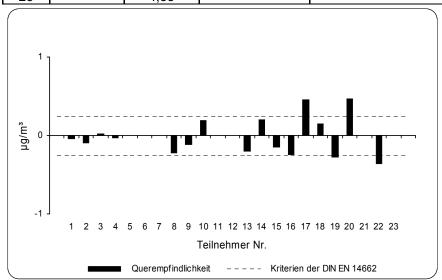


Abbildung 52: Vergleich der Querempfindlichkeiten der o-Xylolmessverfahren gegenüber organischen Störkomponenten

4.2.4.3 Wasserdampf

Tabelle 55: Querempfindlichkeit der o-Xylolmessverfahren gegenüber Wasserdampf

		· · · · · · · · · · · · · · · · · · ·	it doi o Aylonnood	vonanion gogonasor i
TN	ohne H₂O	mit H ₂ O	Querempfindlich- keiten	Kriterien der DIN EN 14662
	[µg/m³]	[µg/m³]	[µg/m³]	erfüllt
1	4,36	3,88	-0,39	nein
2	4,68	4,22	-0,37	nein
3	5,20	5,19	0,09	ja
4	5,04	4,93	-0,01	ja
5				
6	5,13	5,11	0,08	ja
7				
8	4,99	5,02	0,13	ja
9	3,22	3,01	-0,15	ja
10	4,98	5,98	1,10	nein
11				
12				
13	4,75	4,61	-0,04	ja
14	5,33	5,53	0,31	nein
15	3,58	4,35	0,84	nein
16	4,22	4,27	0,13	ja
17	5,44	5,39	0,06	ja
18	4,32	4,39	0,16	ja
19	5,78	5,40	-0,26	nein
20	4,02			
21		5,21		
22	4,80	4,79	0,09	ja
23		4,48		

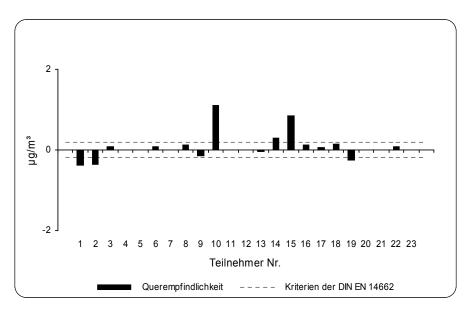


Abbildung 53: Vergleich der Querempfindlichkeiten der o-Xylolmessverfahren gegenüber Wasserdampf

4.3. Memoryeffekt - Zusätzliche Komponenten

4.3.1. Toluol

Tabelle 56: Ermittlung des Memoryeffektes für die Komponente Toluol

Messwerte [μg/m³]					
Teilnehmer	1	2	3	4	Memoryeffekt
TN 1	1,47	0,47	0,30	0,22	
TN 2	1,83	0,53	0,25	0,00	Ja
TN 3	4,62	1,26	0,84	0,61	Ja
TN 4	0,34	0,20	0,14	0,07	
TN 5	0,40	0,09	0,04	0,00	
TN 6	0,00	0,00	0,00	0,00	
TN 7	0,29	0,16	0,11	0,10	
TN 8	9,14	3,89	2,27	1,42	Ja
TN 9	5,32	2,50	1,80	1,45	Ja
TN 10	0,84	0,59	0,42	0,32	Ja
TN 11					
TN 12					
TN 13	4,21	1,50	1,02	0,81	Ja
TN 14	1,30	0,53	0,35		Ja
TN 15	0,24	0,20	0,20	0,16	
TN 16	6,74	2,07	1,65	1,26	Ja
TN 17	2,38	0,72	0,65	0,60	Ja
TN 18					
TN 19					
TN 20					
TN 21					
TN 22	0,00	0,00	0,00	0,32	
TN 23					

4.3.2. m-Xylol

Tabelle 57: Ermittlung des Memoryeffektes für die Komponente m-Xylol

Messwerte [μg/m³]					
Teilnehmer	1	2	3	4	Memoryeffekt
TN 1	0,93	0,16	0,11	0,07	
TN 2	1,09	0,00	0,00	0,00	
TN 3	2,65	0,86	0,50	0,41	Ja
TN 4	0,00	0,00	0,00	0,00	
TN 5	0,27	0,04	0,11	0,08	
TN 6	0,67	0,00	0,00	0,00	
TN 7	0,26	0,07	0,03	0,01	
TN 8	5,26	1,35	0,51	0,07	Ja
TN 9	4,54	2,71	2,20	1,88	Ja
TN 10	0,30	0,16	0,13	0,10	
TN 11					
TN 12					
TN 13	3,32	1,25	0,83	0,23	Ja
TN 14	1,68	1,96	1,39		Ja
TN 15	0,27	0,27	0,27	0,22	
TN 16	5,25	1,90	1,37	1,06	Ja
TN 17	1,94	2,24	0,61	1,59	Ja
TN 18					
TN 19					
TN 20					
TN 21					
TN 22	0,00	0,00	0,00	0,12	
TN 23					

4.3.3. Ethylbenzol

Tabelle 58: Ermittlung des Memoryeffektes für die Komponente Ethylbenzol

Messwerte [μg/m³]					
Teilnehmer	1	2	3	4	Memoryeffekt
TN 1	0,00	0,00	0,00	0,00	
TN 2	0,00	0,00	0,00	0,00	
TN 3					
TN 4					
TN 5					
TN 6	0,00	0,00	0,00	0,00	
TN 7					
TN 8	0,07	0,00	0,05	0,07	
TN 9	0,19	0,14	0,19	0,19	
TN 10					
TN 11					
TN 12					
TN 13	0,00	0,00	0,00	0,29	
TN 14					
TN 15	0,00	0,00	0,00	0,00	
TN 16	0,00	0,00	0,00	0,00	
TN 17	0,22	0,00	0,29	0,00	
TN 18					
TN 19					
TN 20					
TN 21					
TN 22	0,00	0,00	0,00	0,00	
TN 23					

4.3.4. o-Xylol

Tabelle 59: Ermittlung des Memoryeffektes für die Komponenten o-Xylol

Messwerte [μg/m³]					
Teilnehmer	1	2	3	4	Memoryeffekt
TN 1	0,00	0,00	0,00	0,00	
TN 2	0,00	0,00	0,00	0,00	
TN 3	1,18	0,47	0,33		
TN 4	0,00	0,00	0,00	0,00	
TN 5					
TN 6	0,28	0,00	0,00	0,00	
TN 7					
TN 8	1,69	0,53	0,33	0,27	Ja
TN 9	0,81	0,39	0,27	0,23	
TN 10	0,45	0,36	0,13	0,06	
TN 11					
TN 12					
TN 13	1,71	0,66	0,52	0,27	Ja
TN 14	0,72				
TN 15	0,01	0,01	0,01	0,13	
TN 16	2,03	0,75	0,49	0,26	Ja
TN 17	1,13	0,32	0,62	0,31	
TN 18					
TN 19					
TN 20					
TN 21					
TN 22	0,00	0,00	0,00	0,00	
TN 23					

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen Leibnizstraße 10 45659 Recklinghausen Telefon 02361 305-0 poststelle@lanuv.nrw.de

www.lanuv.nrw.de

