

02.10.2024

Triacetonamin (TAA, CAS 826-36-8)

2,5,7,10-Tetraoxaundecan (TOU, CAS 4431-83-8)

in der Ruhr bei Hattingen und Mülheim

Am 11.09.2024 berichteten wir in einem Sofortbericht über Befunde von bis zu 3 μ g/L Triacetonamin in der Ruhr bei Hattingen (km 56,7) in einer Mischprobe vom 05.-07.09.2024. Seither lagen die nachgewiesenen TAA-Konzentrationen wieder unterhalb der Meldeschwelle (s. auch Tab.1).

Seit einigen Tagen steigen die Konzentrationen wieder an. Im Sofortbericht informierten wir über Befunde von bis zu 5,1 μ g/I Mischprobe aus Mülheim (km 14,4), im Folgebericht 1 lagen die Maximalbefunde in einer Mischprobe aus Hattingen (km 56,7) bei 13 μ g/I TAA. Zudem wurden ebenfalls Befunde von 2,5,7,10-Tetraoxaundecan von bis zu 4,5 μ g/L gemeldet.

Aktuell können wir berichten, dass die Befunde von TAA weiterhin leicht gestiegen sind. In Hattingen (km 56,7) wurde 14 μ g/L, in Mülheim (km 14,4) 8,5 μ g/L gemessen. Ferner wurde weiterhin 2,5,7,10-Tetraoxaundecan mit über 2 μ g/L an beiden Stationen gemessen.

Einzelheiten entnehmen Sie bitte Tabelle 1 (aktuelle Ergebnisse gelb hinterlegt, Maximalbefund je Station in rot).

Tab. 1.: Triacetonamin in der Ruhr

Messstelle	Anfang	Ende	Triacetonamin [μg/l]	Bericht
Hattingen (Ruhr)	10.09.24 08:00	12.09.24 08:00	2.0	Sofortbericht 30.09.24
Mülheim (Ruhr)	16.09.24 08:00	16.09.24 16:00	1.4	Sofortbericht 30.09.24
Mülheim (Ruhr)	17.09.24 00:00	17.09.24 08:00	1.2	Sofortbericht 30.09.24

Mülheim (Ruhr)	27.09.24 08:00	29.09.24 08:00	1.2	Sofortbericht 30.09.24
Mülheim (Ruhr)	29.09.24 08:00	30.09.24 08:00	5.1	Sofortbericht 30.09.24
Hattingen (Ruhr)	26.09.24 08:00	28.09.24 08:00	6.6	Folgebericht 1 01.10.24
Hattingen (Ruhr)	28.09.24 08:00	30.09.24 08:00	13	Folgebericht 1 01.10.24
Wetter (Ruhr)	30.09.24 08:28		11	Folgebericht 1 01.10.24
Hattingen (Ruhr)	30.09.24 08:00	01.10.24 08:00	14	Folgebericht 2 02.10.24
Mülheim (Ruhr)	30.09.24 08:00	01.10.24 08:00	8.5	Folgebericht 2 02.10.24

Die Konzentrationen wurden anhand einer für den Bereich 0,5 – 4,5μg/L gültigen Kalibrierung errechnet. Die Messung erfolgte mittels SPE-GC/MS.

Tab. 2: 2,5,7,10-Tetraoxaundecan in der Ruhr

Messstelle	Anfang	Ende	2,5,7,10- Tetraoxa- undecan [µg/]	Bericht
Hattingen (Ruhr)	26.09.24 08:00	28.09.24 08:00	1,1	Folgebericht 1 01.10.24
Hattingen (Ruhr)	28.09.24 08:00	30.09.24 08:00	4,5	Folgebericht 1 01.10.24
Fröndenberg (Ruhr)	30.09.24 13:15		< 0.5	Folgebericht 1 01.10.24
Wetter (Ruhr)	30.09.24 08:28		1.6	Folgebericht 1 01.10.24
Hattingen (Ruhr)	30.09.24 08:00	01.10.24 08:00	2.4	Folgebericht 2 02.10.24
Mülheim (Ruhr)	30.09.24 08:00	01.10.24 08:00	2.1	Folgebericht 2 02.10.24

Die Konzentrationen wurden anhand einer für den Bereich $0.5-4.5 \mu g/L$ gültigen Kalibrierung errechnet. Die Messung erfolgte mittels SPE-GC/MS.

Weitere Untersuchungen laufen.

Bewertung

Triacetonamin

Triacetonamin ist in Wassergefährdungsklasse (WGK) 1 und somit als schwach wassergefährdend und als biologisch nicht leicht abbaubar eingestuft.

Ökotoxikologische Daten:

Fische:			
LC50	Danio rerio	Zebrabärbling	63 mg/l (96h)
LC50	Leuciscus idus	Goldorfe	40mg/l (48h)
NOEC	Danio rerio	Zebrabärbling	18mg/l (96h)
Krebse/\	Wirbellose:		
EC50	Daphnia magna	Großer Wasserfloh	281 mg/l (48h)
NOEC	Daphnia magna	Großer Wasserfloh	<5,8 mg/l (48h)
LC50	Daphnia magna	Großer Wasserfloh	>100 mg/l (48h)
Algen:			
EC50	Desmodesmus subspicatus	Grünalge (Wachstum)	566,2 mg/l (72h)
EC50	Desmodesmus subspicatus	Grünalge (Biomasse)	439,5 mg/l (72h)
NOEC	Desmodesmus subspicatus	Grünalge (Wachstum)	100 mg/l (48h)
NOEC	Desmodesmus subspicatus	Grünalge (Biomasse)	200 mg/l (72h)
Bakterie	n:		,
EC10	Pseudomonas putida	320 mg/l	
EC50	Belebtschlamm	>100 mg/l (3h)	

Gewässerschutz – Orientierungswerte

Triacetonamin PV 10 µg/l

Präventiver Vorsorgewert

Trinkwasser – Orientierungswerte

Triacetonamin GOW 0,3 µg/l

Gesundheitlicher Orientierungswert (lt. Ableitung UBA 2016)

2,5,7,10-Tetraoxaundecan

Wassergefährdungsklasse: keine Angaben

Ökotoxikologische Daten:

Relevante PNEC- und andere Schwellenwerte

End- punkt	Schwellen- wert	Organismus	Umweltkompartime nt	Expositionsdauer
PNEC	62,54 ^{mg} / _l	Wasserorganismen	Süßwasser	kurzzeitig (einmalig)
PNEC	6,25 mg/ _l	Wasserorganismen	Meerwasser	kurzzeitig (einmalig)
PNEC	10 mg/l	Wasserorganismen	Kläranlage (STP)	kurzzeitig (einmalig)
PNEC	234,6 ^{mg} /kg	Wasserorganismen	Süßwassersediment	kurzzeitig (einmalig)
PNEC	23,46 ^{mg} / _{kg}	Wasserorganismen	Meeressediment	kurzzeitig (einmalig)
PNEC	542,7 µg/kg	terrestrische Organismen	Boden	kurzzeitig (einmalig)

(Akute) aquatische Toxizität				
Endpunkt	Wert	Spezies	Quelle	Expositi-
LC50	>100 ^{mg} /	Fisch	ECHA	96 h
EC50	>100 mg/l	Wirbellose	ECHA	24 h
EC50	>100 ^{mg} /	Alge	ECHA	72 h

(Chronische) aqua	atische Toxizität			
Endpunkt	Wert	Spezies	Quelle	Expositi- onsdauer
EC50	>1.000	Mikroorganisme n	ECHA	3 h

mg/ _[
------------------	--	--	--

Persistenz und Abbaubarkeit

Theoretischer Sauerstoffbedarf: 1,754 ^{mg}/_{mg} Theoretisches Kohlendioxid: 1,876 ^{mg}/_{mg}

Prozess der Abbaubarkeit		
Prozess	Abbaurate	Zeit
Sauerstoffverbrauch	4,3 %	28 d

Bioakkumulationspotenzial

Reichert sich in Organismen nicht nennenswert an.

n-Octanol/Wasser (log KOW)	-0,69 (22 °C) (ECHA)
----------------------------	----------------------

Grenz- und Orientierungswerte

Keine Angaben

Bisherige Alarmfälle:

Triacetonamin: 11.09.2024 (WIP)

Tetraoxaundecan: Okt. 2023, Febr. 2024, Apr.2024 (als Unbekannte 59_89), Juli 2024 als

TOU

Informationswege:

Die Wasserschutzpolizei KK Umweltschutz wurde benachrichtigt, um ggfls. weitere Ermittlungen einzuleiten.

Die Nachrichtenbereitschaftszentrale (NBZ) des LANUV wird informiert und um eine Meldung über den Warn- und Informationsdienst Ruhr (WIP) an den Meldekopf der AWWR gebeten.

Die Bezirksregierungen Düsseldorf und Arnsberg werden benachrichtigt.

Die Betreiber der Trinkwassergewinnungsanlagen an der Ruhr werden über den Meldekopf der AWWR über vorliegende Schadstoffwellen informiert. Die Trinkwasserversorger können im Bedarfsfall eigenverantwortlich anlagenspezifisch erforderliche Maßnahmen des Trinkwasserschutzes rechtzeitig einleiten.

Sofern uns weitere Analysenergebnisse vorliegen, werden wir Sie umgehend informieren.